www.theOPGupta.com Solutions Of JEE Main (2016) Code F MATHEMATICS

Prepared By: O. P. GUPTA
Mob. +919650350480
Email : theopgupta@gmail.com

PART B - MATHEMATICS

31. Two sides of a rhombus are along the lines, $x-y+1=0$ and $7 x-y-5=0$. If its diagonals intersect at $(-1,-2)$, then which one of the following is a vertex of this rhombus?
(1) $(-3,-8)$
(2) $\left(\frac{1}{3},-\frac{8}{3}\right)$
(3) $\left(-\frac{10}{3},-\frac{7}{3}\right)$
(4) $(-3,-9)$
32. If the $2^{\text {nd }}, 5^{\text {th }}$ and $9^{\text {th }}$ terms of a non-constant A.P. are in G.P., then the common ratio of this G.P. is:
(1) $\frac{4}{3}$
(2) 1
(3) $\frac{7}{4}$
(4) $\frac{8}{5}$
33. Let P be the point on the parabola, $y^{2}=8 x$ which is at a minimum distance from the centre C of the circle, $x^{2}+(y+6)^{2}=1$. Then the equation of the circle, passing through C and having its centre at P is:
(1) $x^{2}+y^{2}-x+4 y-12=0$
(2) $x^{2}+y^{2}-\frac{x}{4}+2 y-24=0$
(3) $x^{2}+y^{2}-4 x+9 y+18=0$
(4) $x^{2}+y^{2}-4 x+8 y+12=0$
34. The system of linear equations
$x+\lambda y-z=0$
$\lambda x-y-z=0$
$x+y-\lambda z=0$
has a non-trivial solution for :
(1) exactly one value of λ.
(2) exactly two values of λ.
(3) exactly three values of λ.
(4) infinitely many values of λ.
35. If $f(x)+2 f\left(\frac{1}{x}\right)=3 x, x \neq 0$, and $S=\{x \in R: f(x)=f(-x)\}$; then $S:$
(1) contains exactly one element.
(2) contains exactly two elements.
(3) contains more than two elements.
(4) is an empty set.
36. Let $\mathrm{p}=\lim _{\mathrm{x} \rightarrow 0+}\left(1+\tan ^{2} \sqrt{\mathrm{x}}\right)^{\frac{1}{2 \mathrm{x}}}$ then $\log \mathrm{p}$ is equal to:
(1) 1
(2) $\frac{1}{2}$
(3) $\frac{1}{4}$
(4) 2 .
37. A value of θ for which $\frac{2+3 i \sin \theta}{1-2 i \sin \theta}$ is purely imaginary, is:
(1) $\frac{\pi}{6}$
(2) $\sin ^{-1}\left(\frac{\sqrt{3}}{4}\right)$
(3) $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
(4) $\frac{\pi}{3}$
38. The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal half of the distance between its foci, is:
(1) $\frac{4}{\sqrt{3}}$
(2) $\frac{2}{\sqrt{3}}$
(3) $\sqrt{3}$
(4) $\frac{4}{3}$
39. If the standard deviation of the numbers $2,3, \mathrm{a}$ and 11 is 3.5 , then which of the following is true?
(1) $3 a^{2}-32 a+84=0$
(2) $3 a^{2}-34 a+91=0$
(3) $3 a^{2}-23 a+44=0$
(4) $3 \mathrm{a}^{2}-26 \mathrm{a}+55=0$
40. The integral $\int \frac{2 \mathrm{x}^{12}+5 \mathrm{x}^{9}}{\left(\mathrm{x}^{5}+\mathrm{x}^{3}+1\right)^{3}} \mathrm{dx}$ is equal to:
(1) $\frac{\mathrm{x}^{10}}{2\left(\mathrm{x}^{5}+\mathrm{x}^{3}+1\right)^{2}}+C$
(2) $\frac{x^{5}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C$
(3) $\frac{-x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C$
(4) $\frac{-x^{5}}{\left(\mathrm{x}^{5}+\mathrm{x}^{3}+1\right)^{2}}+$ C
where C is an arbitrary constant.
41. If the line, $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$ lies in the plane, $l x+m y-z=9$, then $l^{2}+m^{2}$ is equal to:
(1) 18
(2) 5
(3) 2
(4) 26
42. If $0 \leq x<2 \pi$, then the number of real values of x, which satisfy the equation $\cos \mathrm{x}+\cos 2 \mathrm{x}+\cos 3 \mathrm{x}+\cos 4 \mathrm{x}=0$ is:
(1) 5
(2) 7
(3) 9
(4) 3
43. The area (in sq. units) of the region $\left\{(x, y): y^{2} \geq 2 x\right.$ and $\left.x^{2}+y^{2} \leq 4 x, x \geq 0, y \geq 0\right\}$ is:
(1) $\pi-\frac{8}{3}$
(2) $\pi-\frac{4 \sqrt{2}}{3}$
(3) $\frac{\pi}{2}-\frac{2 \sqrt{2}}{3}$
(4) $\pi-\frac{4}{3}$
44. Let \vec{a}, \vec{b} and \vec{c} be three unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\sqrt{3}}{2}(\vec{b}+\vec{c})$. If \vec{b} is not parallel to \vec{c}, then the angle between \vec{a} and \vec{b} is:
(1) $\frac{\pi}{2}$
(2) $\frac{2 \pi}{3}$
(3) $\frac{5 \pi}{6}$
(4) $\frac{3 \pi}{4}$
45. A wire of length 2 units is cut into two parts which are bent respectively to form a square of side $=\mathrm{x}$ units and a circle of radius $=r$ units. If the sum of the areas of the square and the circle so formed is minimum, then:
(1) $(4-\pi) x=\pi r$
(2) $x=2 r$
(3) $2 x=r$
(4) $2 x=(\pi+4) r$
46. The distance of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along the line $x=y=z$ is:
(1) $10 \sqrt{3}$
(2) $\frac{10}{\sqrt{3}}$
(3) $\frac{20}{3}$
(4) $3 \sqrt{10}$
47. If a curve $y=f(x)$ passes through the point $(1,-1)$ and satisfies the differential equation, $y(1+x y) d x=x$ dy, then $\mathrm{f}\left(-\frac{1}{2}\right)$ is equal to:
(1) $-\frac{4}{5}$
(2) $\frac{2}{5}$
(3) $\frac{4}{5}$
(4) $-\frac{2}{5}$
48. If the number of terms in the expansion of $\left(1-\frac{2}{x}+\frac{4}{x^{2}}\right)^{n}, x \neq 0$, is 28 , then the sum of the coefficients of all the terms in this expansion, is:
(1) 2187
(2) 243
(3) 729
(4) 64
49. Consider
$f(x)=\tan ^{-1}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right), x \in\left(0, \frac{\pi}{2}\right)$. A normal to $y=f(x)$ at $x=\frac{\pi}{6}$ also passes through the point:
(1) $\left(0, \frac{2 \pi}{3}\right)$
(2) $\left(\frac{\pi}{6}, 0\right)$
(3) $\left(\frac{\pi}{4}, 0\right)$
(4) $(0,0)$
50. \quad For $x \in \mathbf{R}, f(x)=|\log 2-\sin x|$ and $g(x)=f(f(x))$, then:
(1) $\mathrm{g}^{\prime}(0)=\cos (\log 2)$
(2) $\mathrm{g}^{\prime}(0)=-\cos (\log 2)$
(3) g is differentiable at $x=0$ and $g^{\prime}(0)=-\sin (\log 2)$
(4) g is not differentiable at $x=0$
51. Let two fair six-faced dice A and B be thrown simultaneously. If E_{1} is the event that die A shows up four, E_{2} is the event that die B shows up two and E_{3} is the event that the sum of numbers on both dice is odd, then which of the following statements is NOT true?
(1) E_{2} and E_{3} are independent.
(2) E_{1} and E_{3} are independent.
(3) E_{1}, E_{2} and E_{3} are independent.
(4) E_{1} and E_{2} are independent.
52. If $\mathrm{A}=\left[\begin{array}{cc}5 \mathrm{a} & -\mathrm{b} \\ 3 & 2\end{array}\right]$ and $\mathrm{A} \operatorname{adj} \mathrm{A}=\mathrm{A} \mathrm{A}^{\mathrm{T}}$, then $5 \mathrm{a}+\mathrm{b}$ is equal to:
(1) 5
(2) 4
(3) 13
(4) -1
53. The Boolean Expression $(\mathrm{p} \wedge \sim \mathrm{q}) \vee \mathrm{q} \vee(\sim \mathrm{p} \wedge \mathrm{q})$ is equivalent to:
(1) $\mathrm{p} \wedge \mathrm{q}$
(2) $\mathrm{p} \vee \mathrm{q}$
(3) $\mathrm{p} \vee \sim \mathrm{q}$
(4) $\sim p \wedge q$
54. The sum of all real values of x satisfying the equation
$\left(x^{2}-5 x+5\right)^{x^{2}+4 x-60}=1$ is
(1) -4
(2) 6
(3) 5
(4) 3
55. The centres of those circles which touch the circle, $x^{2}+y^{2}-8 x-8 y-4=0$, externally and also touch the x -axis, lie on:
(1) an ellipse which is not a circle.
(2) a hyperbola.
(3) a parabola.
(4) a circle.
56. If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL and arranged as in a dictionary; then the position of the word SMALL is:
(1) $59^{\text {th }}$
(2) $52^{\text {nd }}$
(3) $58^{\text {th }}$
(4) $46^{\text {th }}$
57. $\lim _{n \rightarrow \infty}\left(\frac{(n+1)(n+2) \ldots 3 n}{n^{2 n}}\right)^{1 / n}$ is equal to:
(1) $\frac{27}{\mathrm{e}^{2}}$
(2) $\frac{9}{\mathrm{e}^{2}}$
(3) $3 \log 3-2$
(4) $\frac{18}{\mathrm{e}^{4}}$
58. If the sum of the first ten terms of the series $\left(1 \frac{3}{5}\right)^{2}+\left(2 \frac{2}{5}\right)^{2}+\left(3 \frac{1}{5}\right)^{2}+4^{2}+\left(4 \frac{4}{5}\right)^{2}+\ldots$, is $\frac{16}{5} \mathrm{~m}$, then m is equal to:
(1) 101
(2) 100
(3) 99
(4) 102
59. If one of the diameters of the circle, given by the equation, $x^{2}+y^{2}-4 x+6 y-12=0$, is a chord a a circle S, whose centre is at $(-3,2)$, then the radius of S is:
(1) $5 \sqrt{3}$
(2) 5
(3) 10
(4) $5 \sqrt{2}$
60. A man is walking towards a vertical pillar in a straight path, at a uniform speed. At a certain point A on the path, he observes that the angle of elevation of the top of the pillar is 30°. After walking for 10 minutes from A in the same direction, at a point B , he observes that the angle of elevation of the top of the pillar is 60°. Then the time taken (in minutes) by him, from B to reach the pillar, is:
(1) 10
(2) 20
(3) 5
(4) 6

Solutions

31. Remaining two sides of rhombus are $x-y-3=0$ and $7 x-y+15=0$.

So on solving, we get vertices as $\left(\frac{1}{3},-\frac{8}{3}\right),(1,2),\left(-\frac{7}{3},-\frac{4}{3}\right)$ and $(-3,-6)$.
32. Let the G.P. be $a, a r, \operatorname{ar}^{2}$ and terms of A.P. are $A+d, A+4 d, A+8 d$
then $\frac{\mathrm{ar}^{2}-\mathrm{ar}}{\mathrm{ar}-\mathrm{a}}=\frac{(\mathrm{A}+8 \mathrm{~d})-(\mathrm{A}+4 \mathrm{~d})}{(\mathrm{A}+4 \mathrm{~d})-(\mathrm{A}+\mathrm{d})}=\frac{4}{3}$
$\Rightarrow \mathrm{r}=\frac{4}{3}$.

Alternate Solution:

Let AP is $a, a+d, a+2 d \ldots .$.
$2^{\text {nd }}, 5^{\text {th }}$ and $9^{\text {th }}$ terms $a+d, a+4 d, a+8 d$ are in GP
$\Rightarrow(a+4 d)^{2}=(a+d)(a+8 d)$
$\Rightarrow \mathrm{d}(8 \mathrm{~d}-\mathrm{a})=0 \Rightarrow 8 \mathrm{~d}=\mathrm{a}$ as $\mathrm{d} \neq 0$
Hence common ratio of GP $\frac{a+4 d}{a+d}=\frac{8 d+4 d}{8 d+d}=\frac{12 d}{9 d}=\frac{4}{3}$.
33. Equation of normal at P is

$$
y=-t x+4 t+2 t^{3}
$$

It passes through $C(0,-6)$
$\therefore \quad-6=4 t+2 t^{3}$
$\Rightarrow t^{3}+2 t+3=0$
$\Rightarrow t=-1$
Hence P is $(2,-4)$

$$
r=\sqrt{4+4}=2 \sqrt{2}
$$

Equation of required circle

$$
\begin{aligned}
& (x-2)^{2}+(y+4)^{2}=8 \\
\Rightarrow \quad & x^{2}+y^{2}-4 x+8 y+12=0
\end{aligned}
$$

34. For non-trivial solution
$\left|\begin{array}{ccc}1 & \lambda & -1 \\ \lambda & -1 & -1 \\ 1 & 1 & -\lambda\end{array}\right|=0$
$1(\lambda+1)-\lambda\left(-\lambda^{2}+1\right)-1(\lambda+1)=0$
$\lambda+1+\lambda^{3}-\lambda-\lambda-1=0$
$\lambda\left(\lambda^{2}-1\right)=0 \Rightarrow \lambda=0, \lambda= \pm 1$.
35. $f(x)+2 f\left(\frac{1}{x}\right)=3 x$
replace x by $\frac{1}{\mathrm{x}}$
$\mathrm{f}\left(\frac{1}{\mathrm{x}}\right)+2 \mathrm{f}(\mathrm{x})=\frac{3}{\mathrm{x}}$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{2}{\mathrm{x}}-\mathrm{x}$ as $\mathrm{f}(\mathrm{x})=\mathrm{f}(-\mathrm{x}) \Rightarrow \mathrm{x}= \pm \sqrt{2}$
36. $\mathrm{p}=\lim _{\mathrm{x} \rightarrow 0^{+}}\left(1+\tan ^{2} \sqrt{\mathrm{x}}\right)^{\frac{1}{2 \mathrm{x}}}$
$=\mathrm{e}^{\lim _{\mathrm{x} \rightarrow 0^{+}} \frac{\tan ^{2} \sqrt{x}}{2 \mathrm{x}}}$
$=\mathrm{e}^{\left.\lim _{x \rightarrow 0^{+}} \frac{1}{\left(\frac{\tan \sqrt{x}}{\sqrt{x}}\right.}\right)^{2}}$
$p=e^{\frac{1}{2}}$
37. $\frac{2+3 \mathrm{i} \sin \theta}{1-2 \mathrm{i} \sin \theta}$ is purely imaginary $\in \operatorname{Arg}\left(\frac{2+3 \mathrm{i} \sin \theta}{1-2 \mathrm{i} \sin \theta}\right)=\frac{\pi}{2},-\frac{\pi}{2}$
\Rightarrow product of slopes taken as in xy plane is -1
$\Rightarrow \frac{3 \sin \theta}{2} \cdot \frac{-2 \sin \theta}{1}=-1$
$\Rightarrow \sin ^{2} \theta=\frac{1}{3}, \theta=\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$.

Alternate Solution:

$\frac{2+3 \mathrm{i} \sin \theta}{1-2 \mathrm{i} \sin \theta}=\frac{2-6 \sin ^{2} \theta+7 \mathrm{i} \sin \theta}{1+4 \sin ^{2} \theta}$ is purely imaginary
$\Rightarrow \frac{2-6 \sin ^{2} \theta}{1+4 \sin ^{2} \theta}=0 \Rightarrow 6 \sin ^{2} \theta=2$.
38. Given, $\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=8$ and $2 \mathrm{~b}=\frac{1}{2}$ (2ae)
$2 b=a e$
$4 b^{2}=a^{2} \cdot e^{2}$
$3 e^{2}=4 \Rightarrow e=\frac{2}{\sqrt{3}}$
39. $\overline{\mathrm{x}}=\frac{2+3+\mathrm{a}+11}{4}=\frac{\mathrm{a}}{4}+4$
$\sigma=\sqrt{\sum \frac{x_{i}^{2}}{\mathrm{n}}-(\overline{\mathrm{x}})^{2}}$
$3.5=\sqrt{\frac{4+9+\mathrm{a}^{2}+121}{4}-\left(\frac{\mathrm{a}}{4}+4\right)^{2}}$
$\Rightarrow \frac{49}{4}=\frac{4\left(134+\mathrm{a}^{2}\right)-\left(\mathrm{a}^{2}+256+32 \mathrm{a}\right)}{16}$
$\Rightarrow 3 \mathrm{a}^{2}-32 \mathrm{a}+84=0$
40. $I=\int \frac{\left(\frac{2}{x^{3}}+\frac{5}{\mathrm{x}^{6}}\right)}{\left(1+\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{x}^{5}}\right)^{3}} d x, \quad$ let $1+\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{x}^{5}}=\mathrm{t}$

Hence $I=\frac{x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+c$.
41. As line $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$ lies in plane $\ell x+m y-z=9$

So $2 \ell-\mathrm{m}-3=0$ (as line is perpendicular to normal of the plane)
Also point ($3,-2,-4$) lies in plane
So $3 \ell-2 \mathrm{~m}-5=0$
From equation (1) and (2), we get $\ell=1, \mathrm{~m}=-1$
So $\ell^{2}+\mathrm{m}^{2}=2$
42. $2 \cos \frac{5 x}{2} \cdot \cos \frac{3 x}{2}+2 \cos \frac{5 x}{2} \cdot \cos \frac{x}{2}=0$
$\Rightarrow \cos \frac{5 x}{2} \cdot\left(2 \cdot \cos x \cdot \cos \frac{x}{2}\right)=0$
$\Rightarrow \frac{\mathrm{x}}{2}=(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{x}=(2 \mathrm{~m}+1) \frac{\pi}{2}, \frac{5 \mathrm{x}}{2}=(2 \mathrm{k}+1) \frac{\pi}{2},($ where $\mathrm{n}, \mathrm{m}, \mathrm{k} \in \mathrm{Z})$
$\Rightarrow \mathrm{x}=(2 \mathrm{n}+1) \pi, \quad \mathrm{x}=(2 \mathrm{~m}+1) \frac{\pi}{2}, \mathrm{x}=(2 \mathrm{k}+1) \frac{\pi}{5}$
$\Rightarrow \mathrm{x}=\pi, \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{\pi}{5}, \frac{3 \pi}{5}, \frac{7 \pi}{5}, \frac{9 \pi}{5}$.
43. The point of intersection of the curve $x^{2}+y^{2}=4 x$ $y^{2}=2 x$ are $(0,0)$ and $(2,2)$ for $x \geq 0$ and $y \geq 0$
So required area $=\frac{1}{4} \pi \times 4-\int_{0}^{2} \sqrt{2 x} d x$
$=\pi-\sqrt{2} \cdot \frac{2}{3}\left[\mathrm{x}^{3 / 2}\right]_{0}^{2}$
$=\pi-\frac{8}{3}$

44. $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\sqrt{3}}{2}(\vec{b}+\vec{c})$
$\Rightarrow(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{b}}-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}) \overrightarrow{\mathrm{c}}=\frac{\sqrt{3}}{2}(\overrightarrow{\mathrm{~b}}+\overrightarrow{\mathrm{c}})$
$\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}=\frac{\sqrt{3}}{2}$ and $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=-\frac{\sqrt{3}}{2}$
$\Rightarrow \cos \theta=-\frac{\sqrt{3}}{2} \quad$ where θ is angle between $\vec{a} \& \vec{b}$
$\therefore \theta=\frac{5 \pi}{6}$.
45. $f(x)=x^{2}+\frac{(1-2 x)^{2}}{\pi}\left(\right.$ As $\left.r=\frac{1-2 x}{\pi}\right)$
$f^{\prime}(x)=2 x-\frac{4(1-2 x)}{\pi}$
$\mathrm{f}^{\prime \prime}(\mathrm{x})=2+\frac{8}{\pi}>0$
For minimum value of sum of area $f^{\prime}(x)=0$
$x=\frac{2}{\pi+4} \Rightarrow r=\frac{1}{\pi+4}$
$\Rightarrow \mathrm{x}=2 \mathrm{r}$.
46. $\cos \theta=\frac{1-1+1}{3}=\frac{1}{3}$
$\cos \theta=\frac{\mathrm{AP}}{\mathrm{AQ}}$
$\mathrm{AQ}=\frac{\mathrm{AP}}{\cos \theta}=10 \sqrt{3}$

47. $y(1+x y) d x=x d y$
$\frac{x d y-y d x}{y^{2}}=x d x$
$\int-d\left(\frac{x}{y}\right)=\int x d x$
$-\frac{x}{y}=\frac{x^{2}}{2}+c$ as $y(1)=-1 \Rightarrow c=\frac{1}{2}$
Hence $y=\frac{-2 x}{x^{2}+1} \Rightarrow f\left(-\frac{1}{2}\right)=\frac{4}{5}$.
48. Total number of terms $={ }^{n+2} C_{2}=28$

$$
\begin{aligned}
& (\mathrm{n}+2)(\mathrm{n}+1)=56 \\
& \mathrm{n}=6
\end{aligned}
$$

Sum of coefficients $=(1-2+4)^{\mathrm{n}}$

$$
=3^{6}=729
$$

[*Note: In the solution it is considered that different terms in the expansion having same powers are not merged, as such it should be a bonus question.]
49. $\mathrm{f}(\mathrm{x})=\tan ^{-1} \sqrt{\frac{1+\sin \mathrm{x}}{1-\sin \mathrm{x}}}$, where $\mathrm{x} \in\left(0, \frac{\pi}{2}\right)$
$=\tan ^{-1}\left(\left|\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\right|\right)$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{\pi}{4}+\frac{\mathrm{x}}{2}, \quad \mathrm{f}\left(\frac{\pi}{6}\right)=\frac{\pi}{3}$
$\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2}$
Equation of normal is
$y-\frac{\pi}{3}=-2\left(x-\frac{\pi}{6}\right)$
It passes through $\left(0, \frac{2 \pi}{3}\right)$.
50. \quad At $\mathrm{x}=0, \mathrm{f}$ is differential and $\mathrm{f}^{\prime}(0)=-\cos 0=-1$
$\mathrm{g}^{\prime}(0)=\mathrm{f}^{\prime}(\mathrm{f}(0)) \cdot \mathrm{f}^{\prime}(0)$
$=-\cos (\log 2) \times-1 \quad($ at $\mathrm{x}=0, \mathrm{f}(0)=\log 2)$
$=\cos (\log 2)$
51. $\quad \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{1}{6}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{1}{6}, \mathrm{P}\left(\mathrm{E}_{3}\right)=\frac{1}{2}$

Also $\mathrm{P}\left(\mathrm{E}_{1} \cap \mathrm{E}_{2}\right)=\frac{1}{36}, \mathrm{P}\left(\mathrm{E}_{2} \cap \mathrm{E}_{3}\right)=\frac{1}{12}, \mathrm{P}\left(\mathrm{E}_{1} \cap \mathrm{E}_{3}\right)=\frac{1}{12}$
And $\mathrm{P}\left(\mathrm{E}_{1} \cap \mathrm{E}_{2} \cap \mathrm{E}_{3}\right)=0 \neq \mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{E}_{3}\right)$
Hence, $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$ are not independent.
52. $\quad A$ adj $A=|A| I_{n}=\left[\begin{array}{cc}5 \mathrm{a} & -\mathrm{b} \\ 3 & 2\end{array}\right]\left[\begin{array}{cc}5 \mathrm{a} & 3 \\ -\mathrm{b} & 2\end{array}\right]$
$\Rightarrow(10 a+3 b)\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}25 a^{2}+b^{2} & 15 a-2 b \\ 15 a-2 b & 13\end{array}\right]$
$\Rightarrow 15 \mathrm{a}-2 \mathrm{~b}=0$ and $10 \mathrm{a}+3 \mathrm{~b}=13$
$\Rightarrow 5 \mathrm{a}+\mathrm{b}=5 \times \frac{2}{5}+3=5$.
53. $(\mathrm{p} \wedge \sim \mathrm{q}) \vee \mathrm{q} \vee(\sim \mathrm{p} \wedge \mathrm{q})$
$\equiv\{(p \vee q) \wedge(\sim q \vee q)\} \vee(\sim p \wedge q)$
$\equiv\{(p \vee q) \wedge T\} \vee(\sim p \wedge q)$
$\equiv(p \vee q) \vee(\sim p \wedge q)$
$\equiv\{(p \vee q) \vee \sim p\} \wedge(p \vee q \vee q)$
$\equiv \mathrm{T} \wedge(\mathrm{p} \vee \mathrm{q})$
$\equiv \mathrm{p} \vee \mathrm{q}$
54. Either $x^{2}-5 x+5=1$ or $x^{2}+4 x-60=0$
$x=1,4$ or $x=-10,6$
Also $x^{2}-5 x+5=-1$ and $x^{2}+4 x-60 \in$ even number
$\mathrm{x}=2,3$
For $x=3 x^{2}+4 x-60$ is odd
Total solutions are $x=1,4,-10,6,2$
\Rightarrow Sum $=3$
55. Let (h, k) be the centre of the circle which touch $x-a x i s$ and $x^{2}+y^{2}-8 x-8 y-4=0$ externally.
\Rightarrow Radius of that circle is $|\mathrm{k}|$
$\Rightarrow \quad(\mathrm{h}-4)^{2}+(\mathrm{k}-4)^{2}=(|\mathrm{k}|+6)^{2}$
$\Rightarrow \quad x^{2}-8 x-20 y-4=0$ if $y \geq 0$
and $x^{2}-8 x+4 y-4=0$ if $y<0$
$\Rightarrow \quad$ The curve is parabola.
56. Words starting with $A, L, M=\frac{4!}{2!}+4!+\frac{4!}{2!}=48$

Words starting with $\mathrm{SA}, \mathrm{SL}=\frac{3!}{2!}+3!=9$
\Rightarrow Rank of the word SMALL $=58$.
57. $\quad \ln y=\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}} \cdot \log \left(1+\frac{1}{\mathrm{n}}\right)\left(1+\frac{2}{\mathrm{n}}\right) \ldots\left(1+\frac{2 \mathrm{n}}{\mathrm{n}}\right)$

$$
=\frac{1}{\mathrm{n}} \cdot \sum_{\mathrm{r}=1}^{2 \mathrm{n}} \ln \left(1+\frac{\mathrm{r}}{\mathrm{n}}\right)
$$

$\ln \mathrm{y}=\int_{0}^{2} \ln (1+\mathrm{x}) \mathrm{dx}, \quad$ let $\mathrm{t}=1+\mathrm{x}$
$=\int_{1}^{3} \ln t d t$
$=\ln \frac{27}{\mathrm{e}^{2}}$
58. Let $S=\left(\frac{8}{5}\right)^{2}+\left(\frac{12}{5}\right)^{2}+\left(\frac{16}{5}\right)^{2}+\left(\frac{20}{5}\right)^{2}+\ldots . .+\left(\frac{44}{5}\right)^{2}$
$\Rightarrow \mathrm{S}=\frac{16}{25}\left[2^{2}+3^{2}+4^{2}+5^{2} \ldots . .+11^{2}\right]$
$\Rightarrow S=\frac{16}{25}\left[1^{2}+2^{2} \ldots+11^{2}-1\right]=\frac{16}{5} \times 101$
$\Rightarrow \mathrm{m}=101$

Let ' r ' be the radius of circle S $\Rightarrow r=5 \sqrt{3}$

60. $\tan 60^{\circ}=\frac{h}{x} \Rightarrow h=\sqrt{3} x$

$$
\tan 30^{\circ}=\frac{\mathrm{h}}{\mathrm{x}+\mathrm{y}} \Rightarrow \sqrt{3} \mathrm{~h}=\mathrm{x}+\mathrm{y}
$$

$3 \mathrm{x}=\mathrm{x}+\mathrm{y}$
$\Rightarrow 2 \mathrm{x}=\mathrm{y}$
Time taken from A to B is 10 min So time taken from B to pillar is 5 min

