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1.1 Overview

1.1.1 Relation
A relation R from a non-empty set A to a non empty set B is a subset of the Cartesian
product A × B. The set of all first elements of the ordered pairs in a relation R from a
set A to a set B is called the domain of the relation R. The set of all second elements in
a relation R from a set A to a set B is called the range of the relation R. The whole set
B is called the codomain of the relation R. Note that range is always a subset of
codomain.

1.1.2 Types of Relations
A relation R in a set A is subset of A × A. Thus empty set φ and A × A are two extreme
relations.

(i) A relation R in a set A is called empty relation, if no element of A is related to any
element of A, i.e., R = φ  ⊂ A × A.

(ii) A relation R in a set A is called universal relation, if each element of A is related
to every element of A, i.e., R = A × A.

(iii) A relation R in A is said to be reflexive if aRa for all a∈A, R is symmetric if
aRb ⇒ bRa, ∀  a, b ∈ A and it is said to be transitive if aRb and bRc ⇒  aRc
∀ a, b, c ∈ A. Any relation which is reflexive, symmetric and transitive is called
an equivalence relation.

Note: An important property of an equivalence relation is that it divides the set
into pairwise disjoint subsets called equivalent classes whose collection is called
a partition of the set. Note that the union of all equivalence classes gives
the whole set.

1.1.3 Types of Functions
(i) A function f : X → Y is defined to be one-one (or injective), if the images of

distinct elements of X under f are distinct, i.e.,
x1 , x2  ∈ X, f (x1) = f (x2) ⇒  x1 = x2.

(ii) A function f : X → Y is said to be onto (or surjective), if every element of Y is the
image of some element of X under f, i.e., for every y ∈ Y there exists an element
x ∈ X such that f (x) = y.
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2    MATHEMATICS

(iii) A function f : X → Y is said to be one-one and onto (or bijective), if f is both one-
one and onto.

1.1.4 Composition of Functions

(i) Let f  : A → B and g : B → C be two functions. Then, the composition of f and
g, denoted by g o f, is defined as the function g o f : A → C given by

g o f (x) = g (f (x)), ∀  x ∈ A.
(ii) If f : A → B and g : B → C are one-one, then  g o f : A → C is also one-one
(iii) If f : A → B and g : B → C are onto, then g o f : A → C is also onto.

However, converse of above stated results (ii) and (iii) need not be true. Moreover,
we have the following results in this direction.

(iv) Let f : A → B and g : B → C be the given functions such that g o f  is one-one.
Then f is one-one.

(v) Let f : A → B and g : B → C be the given functions such that g o f  is onto. Then
g is onto.

1.1.5  Invertible Function
(i) A function f : X → Y is defined to be invertible, if there exists a function

g : Y → X such that g o f = Ix and f o g = IY. The function g is called the inverse
of f and is denoted by f –1.

(ii) A function  f : X → Y is invertible if and only if f is a bijective function.

(iii) If  f : X → Y, g : Y →  Z and h : Z → S are functions, then
h o (g o f) = (h o g) o f.

(iv) Let  f : X → Y and g : Y →  Z be two invertible functions. Then g o f is also
invertible with (g o f)–1 = f –1 o g–1.

1.1.6  Binary Operations
(i) A binary operation * on a set A is a function * : A × A → A. We denote * (a, b)

by a * b.

(ii) A binary operation * on the set X is called commutative, if a * b = b * a for every
a, b ∈ X.

(iii) A binary operation * : A × A → A is said to be associative if
(a * b) * c = a * (b * c),  for every a, b, c ∈ A.

(iv) Given a binary operation * : A × A → A, an element e ∈ A, if it exists, is called
identity for the operation *, if a * e = a = e * a, ∀  a ∈ A.
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(v) Given a binary operation * : A × A → A, with the identity element e in A, an
element  a ∈ A, is said to be invertible with respect to the operation *, if there
exists an element b in A such that a * b = e = b * a and b is called the inverse of
a and is denoted by a–1.

1.2  Solved Examples

Short Answer (S.A.)
Example 1 Let A = {0, 1, 2, 3} and define a relation R on A as follows:

R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}.
Is R reflexive? symmetric? transitive?

Solution R is reflexive and symmetric, but not transitive since for (1, 0) ∈ R and
(0, 3) ∈ R whereas (1, 3)  ∉ R.

Example 2 For the set A = {1, 2, 3}, define a relation R in the set A as follows:

R = {(1, 1), (2, 2), (3, 3), (1, 3)}.

Write the ordered pairs to be added to R to make it the smallest equivalence relation.

Solution (3, 1) is the single ordered pair which needs to be added to R to make it the
smallest equivalence relation.

Example 3 Let R be the equivalence relation in the set Z of integers given by
R = {(a, b) : 2 divides a – b}. Write the equivalence class [0].

Solution [0] = {0, ± 2, ± 4, ± 6,...}

Example 4 Let the function f : R → R be defined by f (x) = 4x – 1, ∀  x ∈ R. Then,
show that f is one-one.

Solution For any two elements x1, x2 ∈ R such that f (x1) = f (x2), we have

4x1 – 1 = 4x2 – 1

⇒    4x1 = 4x2,  i.e.,  x1 = x2

Hence f is one-one.

Example 5 If f = {(5, 2), (6, 3)}, g = {(2, 5), (3, 6)}, write f o g.

Solution  f o g = {(2, 2), (3, 3)}

Example 6 Let f : R → R be the function defined by f (x) = 4x – 3 ∀  x ∈ R. Then
write f –1.
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Solution      Given that f (x) = 4x – 3 = y (say), then
4x  = y + 3

⇒ x =  
3

4
y+

Hence f –1 (y) = 
3

4
y+

⇒ f –1 (x) = 
3

4
y+

Example 7 Is the binary operation * defined on Z (set of integer) by
m * n = m – n + mn  ∀m, n  ∈ Z commutative?
Solution No. Since for 1, 2 ∈ Z, 1 * 2 = 1 – 2 + 1.2 = 1 while 2 * 1 = 2 – 1 + 2.1 = 3
so that 1 * 2 ≠ 2 * 1.

Example 8 If f  = {(5, 2), (6, 3)} and g = {(2, 5), (3, 6)}, write the range of f and g.

Solution  The range of f = {2, 3} and the range of g = {5, 6}.

Example 9 If A = {1, 2, 3} and f, g are relations corresponding to the subset of A × A
indicated against them, which of f, g is a function? Why?

f = {(1, 3), (2, 3), (3, 2)}
g = {(1, 2), (1, 3), (3, 1)}

Solution   f  is a function since each element of A in the first place in the ordered pairs
is related to only one element of A in the second place while g is not a function because
1 is related to more than one element of A, namely, 2 and 3.
Example 10 If A = {a, b, c, d} and f = {a, b), (b, d), (c, a), (d, c)}, show that f is one-
one from A onto A. Find f –1.
Solution f is one-one since each element of A is assigned to distinct element of the set
A. Also, f is onto since f (A) = A. Moreover, f –1 = {(b, a), (d, b), (a, c), (c, d)}.
Example 11 In the set N of natural numbers, define the binary operation * by m * n =
g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?
Solution The operation is clearly commutative since

         m * n = g.c.d (m, n) = g.c.d (n, m) = n * m  ∀m, n ∈ N.
It is also associative because for l, m, n  ∈ N, we have

    l * (m * n) = g. c. d (l, g.c.d (m, n))
= g.c.d. (g. c. d (l, m), n)

         = (l * m) * n.
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Long Answer (L.A.)
Example 12 In the set of natural numbers N, define a relation R as follows:
∀ n, m ∈ N, nRm if on division by 5 each of the integers n and m leaves the remainder
less than 5, i.e. one of the numbers 0, 1, 2, 3 and 4. Show that R is equivalence relation.
Also, obtain the pairwise disjoint subsets determined by R.
Solution R is reflexive since for each a ∈ N, aRa. R is symmetric since if aRb, then
bRa for a, b ∈ N. Also, R is transitive since for a, b, c ∈ N, if aRb and bRc, then aRc.
Hence R is an equivalence relation in N which will partition the set N into the pairwise
disjoint subsets. The equivalent classes are as mentioned below:

A0 = {5, 10, 15, 20 ...}
A1 = {1, 6, 11, 16, 21 ...}
A2 = {2, 7, 12, 17, 22, ...}
A3 = {3, 8, 13, 18, 23, ...}
A4 = {4, 9, 14, 19, 24, ...}

It is evident that the above five sets are pairwise disjoint and

A0 ∪ A1 ∪ A2 ∪ A3 ∪ A4 = 
4

0
Aii=

∪ =N .

Example 13 Show that the function f : R → R defined by  f (x) = 2 ,
1

x x
x

∀ ∈
+

R , is

neither one-one nor onto.

Solution For x1, x2 ∈ R, consider
f (x1) = f (x2)

⇒ 
1 2

2 2
1 21 1
x x

x x
=

+ +

⇒ x1
2
2x + x1 = x2

2
1x + x2

⇒ x1 x2 (x2 – x1) = x2 – x1

⇒ x1 = x2  or  x1 x2 = 1
We note that there are point, x1 and x2 with x1 ≠ x2  and f (x1) = f (x2), for instance, if

we take x1 = 2 and x2 = 
1
2

, then we have f (x1) =
2
5

 and f (x2) =  
2
5

 but 
12
2

≠ . Hence

f is not one-one. Also,  f is not onto for if so then for 1∈R ∃ x ∈ R such that f (x) = 1
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which gives 2 1
1

x
x

=
+

. But there is no such x in the domain R, since the equation

x2 – x + 1 = 0 does not give any real value of x.

Example 14 Let f, g : R → R be two functions defined as f (x) = x  + x and

g (x) = x  – x  ∀  x ∈ R. Then, find f o g and g o f.

Solution Here f (x) =  x  + x which can be redefined as

f (x) = 
2 if 0
0 if 0
x x

x
≥⎧

⎨ <⎩

Similarly, the function g defined by g (x) = x  – x may be redefined as

g (x) =  
0 if 0

–2 if 0
x

x x
≥⎧

⎨ <⎩

Therefore,  g o f gets defined as :

For x ≥ 0, (g o f ) (x) = g (f (x) = g (2x) = 0

and for x < 0, (g o f ) (x) = g (f (x) = g (0) = 0.

Consequently, we have (g o f ) (x) = 0, ∀  x ∈ R.

Similarly, f o g gets defined as:

For x ≥ 0, (f o g ) (x) = f (g (x) = f (0) = 0,

and for x < 0, (f o g ) (x) = f (g(x)) = f (–2 x) = – 4x.

i.e.
0, 0

( ) ( )
4 , 0

x
f o g x

x x
>⎧

= ⎨− <⎩

Example 15  Let R be the set of real numbers and f : R → R be the function defined
by f (x) = 4x + 5. Show that f is invertible and find f –1.

Solution Here the function f : R → R is defined as f (x) = 4x + 5 = y (say). Then

 4x = y – 5         or        x = 
5

4
y−

.
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This leads to a function g : R → R defined as

g (y) = 
5

4
y−

.

Therefore,            (g o f ) (x) = g(f (x) = g (4x + 5)

= 
4 5 5

4
x+ −

  =  x

or g o f = IR

Similarly    (f o g) (y) = f (g(y))

= 
5

4
yf −⎛ ⎞

⎜ ⎟
⎝ ⎠

=  
54 5

4
y −⎛ ⎞ +⎜ ⎟

⎝ ⎠
  =   y

or f o g = IR .

Hence f is invertible and  f –1 = g which is given by

f –1 (x) = 
5

4
x −

Example 16 Let * be a binary operation defined on Q. Find which of the following
binary operations are associative

(i) a * b = a – b for a, b ∈ Q.

(ii) a * b = 
4

ab
 for a, b ∈ Q.

(iii) a * b = a – b + ab for a, b ∈ Q.
(iv) a * b = ab2 for  a, b ∈ Q.

Solution
(i) * is not associative for if we take a = 1, b = 2 and c = 3, then

(a * b) * c = (1 * 2) * 3 = (1 – 2) * 3 = – 1 – 3 = – 4 and
a * (b * c) = 1 * (2 * 3) = 1 * (2 – 3) = 1 – ( – 1)  =  2.
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Thus (a * b) * c ≠ a * (b * c) and hence * is not associative.
(ii) * is associative since Q is associative with respect to multiplication.
(iii) * is not associative for if we take a = 2, b = 3 and c = 4, then

(a * b) * c = (2 * 3) * 4 = (2 – 3 + 6) * 4 = 5 * 4 = 5 – 4 + 20 = 21, and
a * (b * c) = 2 * (3 * 4) = 2 * (3 – 4 + 12) = 2 * 11 = 2 – 11 + 22 = 13
Thus (a * b) * c ≠  a * (b * c) and hence * is not associative.

(iv) * is not associative for if we take a = 1, b = 2 and c = 3, then (a * b) * c =
(1 * 2) * 3 = 4 * 3 = 4 × 9 = 36 and a * (b * c) = 1 * (2 * 3) = 1 * 18 =
1 × 182 = 324.
Thus (a * b) * c  ≠ a * (b * c) and hence * is not associative.

Objective Type Questions

Choose the correct answer from the given four options in each of the Examples 17 to 25.

Example 17 Let R be a relation on the set N of natural numbers defined by nRm if n
divides m. Then R is

(A) Reflexive and symmetric (B) Transitive and symmetric
(C) Equivalence (D) Reflexive, transitive but not

symmetric
Solution The correct choice is (D).
Since n divides n, ∀  n ∈ N, R is reflexive. R is not symmetric since for 3, 6 ∈ N,
3 R 6 ≠ 6 R 3. R is transitive since for n, m, r whenever n/m and m/r ⇒ n/r, i.e., n
divides m and m divides r, then n will devide r.

Example 18 Let L denote the set of all straight lines in a plane. Let a relation R be
defined by lRm if and only if l is perpendicular to m ∀ l, m ∈ L. Then R is

(A) reflexive (B) symmetric
(C) transitive (D) none of these

Solution The correct choice is (B).

Example 19 Let N be the set of natural numbers and the function f : N → N be
defined by f (n) = 2n + 3 ∀ n ∈ N. Then f is

(A) surjective (B) injective
(C) bijective (D) none of these

Solution (B) is the correct option.

Example 20 Set A has 3 elements and the set B has 4 elements. Then the number of



RELATIONS AND FUNCTIONS    9

injective mappings that can be defined from A to B is
(A) 144 (B) 12
(C) 24 (D) 64

Solution The correct choice is (C). The total number of injective mappings from the
set containing 3 elements into the set containing 4 elements is 4P3 = 4! = 24.

Example 21 Let f : R → R be defined by f (x) = sin x  and g : R → R be defined by
g (x) = x2, then f o g is

(A) x2 sin x (B) (sin x)2

(C) sin x2 (D) 2
sin x
x

Solution (C) is the correct choice.

Example 22 Let f : R → R be defined by f (x) = 3x – 4. Then f –1 (x) is given by

(A)
4

3
x+

(B) – 4
3
x

(C) 3x + 4 (D) None of these

Solution (A) is the correct choice.

Example 23 Let f : R → R be defined by f (x) = x2 + 1. Then, pre-images of 17
and – 3, respectively, are

(A) φ, {4, – 4} (B) {3, – 3}, φ
(C) {4, –4}, φ (D) {4, – 4, {2, – 2}

Solution (C) is the correct choice since for  f –1 ( 17 ) = x ⇒ f (x) = 17 or x2 + 1 = 17
⇒  x = ± 4 or  f –1 ( 17 )  = {4, – 4} and for f –1 (–3) = x ⇒ f (x) = – 3  ⇒ x2 + 1
= – 3 ⇒ x2 = – 4 and hence f –1 (– 3) = φ.

Example 24 For real numbers x and y, define xRy if and only if x – y + 2 is an
irrational number. Then the relation R is

(A) reflexive (B) symmetric
(C) transitive (D) none of these

Solution  (A) is the correct choice.
Fill in the blanks in each of the Examples 25 to 30.

Example 25 Consider the set A = {1, 2, 3} and R be the smallest equivalence relation
on A, then R = ________
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Solution  R = {(1, 1), (2, 2), (3, 3)}.

Example 26 The domain of the function f : R → R defined by f (x) = 2 – 3 2x x+  is
________.
Solution  Here x2 – 3x + 2 ≥ 0

 ⇒   (x – 1) (x – 2) ≥ 0
               ⇒   x  ≤ 1 or  x ≥ 2
Hence the domain of  f  = (– ∞, 1] ∪ [2, ∞)

Example 27 Consider the set A containing n elements. Then, the total number of
injective functions from A onto itself is  ________.
Solution  n!

Example 28 Let Z be the set of integers and R be the relation defined in Z such that
aRb if a – b is divisible by 3. Then R partitions the set Z into ________ pairwise
disjoint subsets.
Solution  Three.

Example 29 Let R be the set of real numbers and * be the binary operation defined on
R as a * b = a + b – ab  ∀  a, b ∈ R. Then, the identity element with respect to the
binary operation * is _______.
Solution  0 is the identity element with respect to the binary operation *.
State True or False for the statements in each of the Examples 30 to 34.

Example 30 Consider the set A = {1, 2, 3} and the relation R = {(1, 2), (1, 3)}. R is a
transitive relation.
Solution  True.

Example 31 Let A be a finite set. Then, each injective function from A into itself is not
surjective.
Solution  False.

Example 32 For sets A, B and C, let f : A → B, g : B → C be functions such that
g o f is injective. Then both f and g are injective functions.
Solution  False.

Example 33 For sets A, B and C, let f : A → B, g : B → C be functions such that
g o f  is surjective. Then g is surjective
Solution  True.
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Example 34 Let N be the set of natural numbers. Then, the binary operation * in N
defined as a * b = a + b, ∀  a, b ∈ N has identity element.
Solution  False.

1.3  EXERCISE
Short Answer (S.A.)
1. Let A = {a, b, c} and the relation R be defined on A as follows:

R = {(a, a), (b, c), (a, b)}.
Then, write minimum number of ordered pairs to be added in R to make R
reflexive and transitive.

2. Let D be the domain of the real valued function f defined by f (x) = 225 x− .
Then, write D.

3. Let f , g : R → R be defined by f (x) = 2x + 1 and g (x) = x2 – 2, ∀ x ∈ R,
respectively. Then, find g o f.

4. Let  f  : R → R be the function defined by f (x) = 2x – 3 ∀ x ∈ R. write f –1.
5. If A = {a, b, c, d} and the function f = {(a, b), (b, d), (c, a), (d, c)}, write f –1.
6. If  f  : R → R  is defined by f  (x) = x2 – 3x + 2, write f (f (x)).
7. Is g = {(1, 1), (2, 3), (3, 5), (4, 7)} a function? If g is described by

g (x) = αx + β, then what value should be assigned to α and β.
8. Are the following set of ordered pairs functions? If so, examine whether the

mapping is injective or surjective.
(i) {(x, y): x is a person, y is the mother of x}.
(ii){(a, b): a is a person, b is an ancestor of a}.

9. If the mappings f and g are given by
f = {(1, 2), (3, 5), (4, 1)} and g = {(2, 3), (5, 1), (1, 3)}, write f o g.

10. Let C be the set of complex numbers. Prove that the mapping f : C → R given by
f (z) = |z|, ∀  z ∈ C, is neither one-one nor onto.

11. Let the function f : R → R be defined by f (x) = cosx, ∀  x ∈ R. Show that f is
neither one-one nor onto.

12. Let X =  {1, 2, 3}and Y = {4, 5}. Find whether the following subsets of X ×Y are
functions from X to Y or not.

(i) f = {(1, 4), (1, 5), (2, 4), (3, 5)} (ii) g = {(1, 4), (2, 4), (3, 4)}
(iii) h = {(1,4), (2, 5), (3, 5)} (iv) k = {(1,4), (2, 5)}.

13. If functions f : A → B and g : B → A satisfy g o f = IA, then show that  f  is one-
one and g is onto.
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14. Let f : R → R be the function defined by f (x) =  
1

2 – cos x   x   R.Then, find

the range of f.
15. Let n be a fixed positive integer. Define a relation R in Z as follows:  a, b   Z,

aRb if and only if a – b is divisible by n . Show that R is an equivalance relation.

Long Answer (L.A.)
16. If A = {1, 2, 3, 4 }, define relations on A which have properties of being:

(a) reflexive, transitive but not symmetric
(b) symmetric but neither reflexive nor transitive
(c) reflexive, symmetric and transitive.

 17. Let R be relation defined on the set of natural number N as follows:
R = {(x, y): x  N, y  N, 2x + y = 41}. Find the domain and range of the
relation R. Also verify whether R is reflexive, symmetric and transitive.

18. Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of each of the
following:

(a)   an injective mapping from A to B
(b)   a mapping from A to B which is not injective
(c)   a mapping from B to A.

19. Give an example of a map
(i)    which is one-one but not onto
(ii)   which is not one-one but onto
(iii)  which is neither one-one nor onto.

20. Let A = R – {3}, B = R – {1}. Let f : A → B be defined by f (x) = 
– 2
–3

x
x

 x   A . Then show that  f  is bijective.
21. Let A = [–1, 1]. Then, discuss whether the following functions defined on A are

one-one, onto or bijective:

(i) ( )
2
xf x  (ii) g(x) = x

(iii) ( )h x x x (iv) k(x) = x2.

22. Each of the following defines a relation on N:
    (i)       x is greater than y,  x, y   N

(ii) x + y = 10, x, y   N



RELATIONS AND FUNCTIONS    13

(iii) x y is square of an integer x, y   N
(iv) x + 4y = 10  x, y   N.
Determine which of the above relations are reflexive, symmetric and transitive.

23. Let A = {1, 2, 3, ... 9} and R be the relation in A ×A defined by (a, b) R (c, d) if
a + d = b + c for (a, b), (c, d) in  A ×A. Prove that R is an equivalence relation
and also obtain the equivalent class [(2, 5)].

24. Using the definition, prove that the function f : A → B is invertible if and only if
f is both one-one and onto.

25. Functions  f , g : R → R are defined, respectively, by f (x) = x2 + 3x + 1,
g (x) = 2x – 3, find
(i)   f o g (ii)   g o f         (iii)    f o f (iv) g o g

26. Let * be the binary operation defined on Q. Find which of the following binary
operations are commutative
(i) a * b = a – b   a, b ∈     Q (ii) a * b = a2 + b2   a, b ∈ Q

(iii) a * b = a + ab   a, b ∈ Q (iv) a * b = (a – b)2   a, b ∈ Q
27. Let * be binary operation defined on R by a * b = 1 + ab,   a, b ∈ R.  Then the

operation * is
(i) commutative but not associative
(ii) associative but not commutative
(iii) neither commutative nor associative
(iv) both commutative and associative

Objective Type Questions
Choose the correct answer out of the given four options in each of the Exercises from
28 to 47 (M.C.Q.).

28. Let T be the set of all triangles in the Euclidean plane, and let a relation R on T
be defined as aRb if a is congruent to b  a, b ∈ T. Then R is

(A) reflexive but not transitive (B) transitive but not symmetric

(C) equivalence (D) none of these

29. Consider the non-empty set consisting of children in a family and a relation R
defined as aRb if a is brother of b. Then R is

(A) symmetric but not transitive (B) transitive but not symmetric

(C) neither symmetric nor transitive (D) both symmetric and transitive
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30. The maximum number of equivalence relations on the set A = {1, 2, 3} are
(A) 1 (B) 2
(C) 3 (D) 5

31. If a relation R on the set {1, 2, 3} be defined by R = {(1, 2)}, then R is
(A) reflexive (B) transitive
(C) symmetric (D) none of these

32. Let us define a relation R in R as aRb if a ≥ b. Then R is

(A) an equivalence relation (B) reflexive, transitive but not
symmetric

(C) symmetric, transitive but (D) neither transitive nor reflexive
not reflexive but symmetric.

33. Let A = {1, 2, 3} and consider the relation
      R = {1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1,3)}.
Then R is
(A) reflexive but not symmetric (B) reflexive but not transitive
(C) symmetric and transitive (D) neither symmetric, nor

transitive
34. The identity element for the binary operation *  defined on Q ~ {0} as

a * b = 
2

ab
  a, b ∈ Q ~ {0} is

(A) 1 (B) 0
(C) 2 (D) none of these

35. If the set A contains 5 elements and the set B contains 6 elements, then the
number of one-one and onto mappings from A to B is
(A) 720 (B) 120
(C) 0 (D) none of these

36. Let A = {1, 2, 3, ...n} and B = {a, b}. Then the number of surjections from A into
B is
(A) nP 2 (B) 2n – 2
(C) 2n – 1 (D) None of these
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37. Let f : R → R be defined by f (x) = 
1
x   x ∈ R. Then f is

(A) one-one (B) onto
(C) bijective (D) f is not defined

38. Let f : R → R be defined by f (x) = 3x2 – 5 and g : R → R by  g (x) = 2 1
x

x + .

Then g o f is

(A)
2

4 2
3 5

9 30 26
x

x x
−

− + (B)
2

4 2
3 5

9 6 26
x

x x
−

− +

(C)
2

4 2
3
2 4
x

x x+ − (D)
2

4 2
3

9 30 2
x

x x+ −

39. Which of the following functions from Z into Z are bijections?
(A) f (x) = x3 (B) f (x) = x + 2

(C) f (x) = 2x + 1 (D) f (x) = x2 + 1
40. Let f : R → R  be the functions defined by f (x) = x3 + 5. Then f –1 (x) is

(A)
1
3( 5)x+ (B)

1
3( 5)x−

(C)
1
3(5 )x− (D) 5 – x

41. Let f : A → B and g : B → C be the bijective functions. Then (g o f)–1 is
(A) f –1 o g–1 (B) f  o g
(C) g –1 o f–1 (D) g  o f

42. Let f : 
3
5

⎧ ⎫− ⎨ ⎬
⎩ ⎭

R → R be defined by f (x) = 
3 2
5 3
x
x
+
− . Then

(A) f –1 (x) = f (x) (B) f –1 (x) = – f (x)

(C) ( f o f ) x = – x (D) f –1 (x) = 
1

19
f (x)

43. Let f : [0, 1] → [0, 1] be defined by f (x) = 
,if is rational

1 , if is irrational
x x
x x

⎧
⎨ −⎩
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Then (f o f) x is
(A) constant (B) 1 + x
(C) x (D) none of these

44. Let f : [2, ∞) → R be the function defined by f (x) = x2 – 4x + 5, then the range
of f is

(A) R (B) [1, ∞)
(C) [4, ∞) (B) [5, ∞)

45. Let  f : N  → R be the function defined by f (x) = 
2 1

2
x−

 and g : Q → R be

another function defined by g (x) = x + 2. Then (g o f) 
3
2

 is

(A) 1 (B) 1

(C)
7
2

(B) none of these

46. Let f : R → R be defined by

2

2 : 3

( ) :1 3
3 : 1

x x

f x x x
x x

>⎧
⎪

= < ≤⎨
⎪ ≤⎩

Then f  (– 1) + f (2) + f (4) is
(A) 9 (B) 14
(C) 5 (D) none of these

47. Let f : R → R be given by f (x) = tan x. Then f –1 (1) is

(A)
4
π

(B) {n π + 
4
π

 : n ∈ Z}

(C) does not exist (D) none of these

Fill in the blanks in each of the Exercises 48 to 52.

48. Let the relation R be defined in N by aRb if 2a + 3b = 30. Then R = ______.
49. Let the relation R be defined on the set

A = {1, 2, 3, 4, 5} by R = {(a, b) : |a2 – b2| < 8. Then R is given by _______.
50. Let  f = {(1, 2), (3, 5), (4, 1) and g = {(2, 3), (5, 1), (1, 3)}. Then g o f  = ______

and f o g = ______.
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51. Let f : R → R be defined by ( )
2

.
1

xf x
x

=
+

Then ( f o f o f ) (x)  = _______

52. If f (x) = (4 – (x–7)3}, then f –1(x) = _______.

State True or False for the statements in each of the Exercises 53 to 63.
53. Let R = {(3, 1), (1, 3), (3, 3)} be a relation defined on the set A = {1, 2, 3}. Then R

is symmetric, transitive but not reflexive.
54. Let f : R → R be the function defined by f (x) = sin (3x+2)  x ∈ R. Then f is

invertible.
55. Every relation which is symmetric and transitive is also reflexive.
56. An integer m is said to be related to another integer n if m is a integral multiple of

n. This relation in Z is reflexive, symmetric and transitive.
57. Let A = {0, 1} and N be the set of natural numbers. Then the mapping

f : N → A defined by f (2n–1) = 0, f (2n) = 1,   n ∈ N, is onto.
58.The relation R on the set A = {1, 2, 3} defined as R = {{1, 1), (1, 2), (2, 1), (3, 3)}

is reflexive, symmetric and transitive.
59. The composition of functions is commutative.
60. The composition of functions is associative.
61. Every function is invertible.
62. A binary operation on a set has always the identity element.



Chapter 2
INVERSE TRIGONOMETRIC

FUNCTIONS

2.1 Overview

2.1.1 Inverse function
Inverse of a function ‘f ’ exists, if the function is one-one and onto, i.e, bijective.
Since trigonometric functions are many-one over their domains, we restrict their
domains and co-domains in order to make them one-one and onto and then find
their inverse. The domains and ranges (principal value branches) of inverse
trigonometric functions are given below:

Functions Domain Range (Principal value
branches)

y = sin–1x [–1,1]
–π π,
2 2

  
    

y = cos–1x [–1,1] [0,π]

y = cosec–1x R– (–1,1)
–π π, – {0}
2 2

  
    

y = sec–1x R– (–1,1) [0,π] – 
π
2

  
  
  

y = tan–1x R
–π π,
2 2

  
    

y = cot–1x R (0,π)
Notes:
 (i) The symbol sin–1x should not be confused with (sinx)–1. Infact sin–1x is an

angle, the value of whose sine is x, similarly for other trigonometric functions.
(ii) The smallest numerical value, either positive or negative, of θ is called the

principal value of the function.
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(iii) Whenever no branch of an inverse trigonometric function is mentioned, we mean
the principal value branch. The value of the inverse trigonometic function which
lies in the range of principal branch is its principal value.

2.1.2 Graph of an inverse trigonometric function
The graph of an inverse trigonometric function can be obtained from the graph of
original function by interchanging x-axis and y-axis, i.e, if (a, b) is a point on the graph
of trigonometric function, then (b, a) becomes the corresponding point on the graph of
its inverse trigonometric function.

It can be shown that the graph of an inverse function can be obtained from the
corresponding graph of original function as a mirror image (i.e., reflection) along the
line y = x.
2.1.3 Properties of inverse trigonometric functions

1. sin–1 (sin x) = x          :
– ,
2 2

x          
cos–1(cos x) = x         : [0, ]x   

tan–1(tan x) = x          :
–π π,
2 2

x ⎛ ⎞∈⎜ ⎟
⎝ ⎠

cot–1(cot x) = x          : ( )0,πx∈

sec–1(sec x) = x         :
π[0,π] –
2

x      
  

cosec–1(cosec x) = x  :
–π π, – {0}
2 2

x        
2. sin (sin–1 x) = x          : x ∈[–1,1]

cos (cos–1 x) = x         : x ∈[–1,1]
tan (tan–1 x) = x          : x ∈R
cot (cot–1 x) = x          : x ∈R
sec (sec–1 x) = x         : x ∈R – (–1,1)
cosec (cosec–1 x) = x  : x ∈R – (–1,1)

3. –1 –11sin cosec x
x

         : x ∈R – (–1,1)

–1 –11cos sec x
x

            : x ∈R – (–1,1)
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–1 –11tan cot x
x

                    : x > 0

= – π + cot–1x                    : x < 0

4. sin–1 (–x) = –sin–1x             : x ∈[–1,1]
cos–1 (–x) = π−cos–1x         : x ∈[–1,1]
tan–1 (–x) = –tan–1x            : x ∈R
cot–1 (–x) = π–cot–1x          : x ∈R
sec–1 (–x) = π–sec–1x         : x ∈R –(–1,1)
cosec–1 (–x) = –cosec–1x    : x ∈R –(–1,1)

5. sin–1x + cos–1x = 
π
2           : x ∈[–1,1]

tan–1x + cot–1x = 
π
2           : x ∈R

sec–1x + cosec–1x = 
π
2       : x ∈R–[–1,1]

6. tan–1x + tan–1y = tan–1 1 –
x y

xy
   
    : xy < 1

tan–1x – tan–1y = tan–1 ; –1
1
x y xy

xy
⎛ ⎞−

>⎜ ⎟+⎝ ⎠

7. 2tan–1x = sin–1
2

2
1

x
x           :  –1 ≤ x ≤ 1

2tan–1x = cos–1
2

2

1 –
1

x
x 

         :  x ≥ 0

2tan–1x = tan–1
2

2
1–

x
x          :  –1 < x < 1

2.2 Solved Examples
Short Answer (S.A.)

Example 1 Find the principal value of cos–1x, for x = 
3

2
.
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Solution If cos–1
3

2
  
    =  θ , then cos θ = 

3
2

.

Since we are considering principal branch, θ ∈ [0, π]. Also, since 
3

2
 > 0, θ being in

the first quadrant, hence cos–1
3

2
  
     = 

π
6 .

Example 2 Evaluate tan–1
–πsin
2

    
        .

Solution tan–1
–πsin
2

    
        = tan–1

πsin
2

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= tan–1(–1) = 
π
4

− .

Example 3  Find the value of cos–1
13πcos

6
  
    .

Solution   cos–1
13πcos

6
  
    =  cos–1 cos(2 )

6
π⎛ ⎞π+⎜ ⎟

⎝ ⎠
  = 

–1 πcos cos
6

⎛ ⎞
⎜ ⎟
⎝ ⎠

                                          = 
6
π

.

Example 4 Find the value of tan–1 
9πtan
8

  
    .

Solution   tan–1 
9πtan
8

  
     = tan–1 tan 8

π⎛ ⎞π +⎜ ⎟
⎝ ⎠

                                         = 
–1tan tan

8
⎛ ⎞π⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 =  

π
8

Example 5  Evaluate  tan (tan–1(– 4)).
Solution  Since tan (tan–1x) = x, ∀  x ∈ R,  tan (tan–1(– 4) = – 4.

Example 6 Evaluate:  tan–1 3 – sec–1 (–2) .
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Solution   tan–1 3 – sec–1 (– 2)  = tan–1 3 – [π – sec–12]

                                  = 
–1 1 2cos

3 2 3 3 3
π π π π⎛ ⎞−π+ =− + =−⎜ ⎟

⎝ ⎠
.

Example 7  Evaluate: 
–1 –1 3sin cos sin

2
    
          

.

Solution  –1 –1 –13 πsin cos sin sin cos
2 3

                           
 = 

–1 1 πsin
2 6

       
.

Example 8 Prove that  tan(cot–1x) = cot (tan–1x). State with reason whether the
equality is valid for all values of x.
Solution Let cot–1x = θ. Then cot θ = x

or, 
πtan – θ  = 
2

x  
     ⇒ –1 πtan – θ

2
x =

So –1 –1 –1π πtan(cot ) tanθ cot – θ cot cot cot(tan )
2 2

x x x⎛ ⎞ ⎛ ⎞= = = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

The equality is valid for all values of x since tan–1x and cot–1x are true for x ∈ R.

Example 9 Find the value of sec –1tan
2
y⎛ ⎞

⎜ ⎟
⎝ ⎠

.

Solution Let –1tan =θ
2
y

, where 
π πθ ,
2 2

⎛ ⎞∈ −⎜ ⎟
⎝ ⎠

. So, tanθ = 
2
y

,

which gives    
24

secθ=
2

y 
.

Therefore,   
2

–1 4
sec tan =secθ=

2 2
yy +⎛ ⎞

⎜ ⎟
⎝ ⎠

.

Example 10 Find value of tan (cos–1x)  and hence evaluate tan 
–1 8cos

17
  
    .

Solution Let cos–1x = θ, then cos θ = x,  where θ ∈ [0,π]
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Therefore,       tan(cos–1x) = 
2 21 – cos θ 1 –tanθ = .

cosθ
x

x
=

Hence     

2

–1

81 –
178 15tan cos  = 817 8

17

⎛ ⎞
⎜ ⎟

⎛ ⎞ ⎝ ⎠ =⎜ ⎟
⎝ ⎠

.

Example 11   Find the value of  –1 –5sin 2cot
12

    
        

Solution  Let cot–1 
–5
12

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = y .   Then  cot y = 
5

12
−

.

Now  
–1 –5sin 2cot

12
    

        
= sin 2y

= 2siny cosy    = 
12 –52
13 13

    
            

πsince cot 0, so ,π
2

y y⎡ ⎤⎛ ⎞< ∈⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

–120
169

 

Example 12   Evaluate 
–1 –11 4cos sin sec

4 3
       

Solution   
–1 –11 4cos sin sec

4 3
       

 = 
–1 –11 3cos sin cos

4 4
⎡ ⎤+⎢ ⎥⎣ ⎦

= –1 –1 –1 –11 3 1 3cos sin cos cos – sin sin sin cos
4 4 4 4

        
                

=  

2 23 1 1 31 – – 1 –
4 4 4 4

    
        

= 
3 15 1 7 3 15 – 7–
4 4 4 4 16

 .
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Long Answer (L.A.)

Example 13 Prove that 2sin–1
3
5

 – tan–1 
17
31

 = 
4
π

Solution Let sin–1 
3
5

= θ, then sinθ = 
3
5

,  where θ ∈ ,
2 2
−π π⎡ ⎤
⎢ ⎥⎣ ⎦

Thus   tan θ = 
3
4

,  which gives  θ  =  tan–1
3
4

.

Therefore,    2sin–1
3
5

 –  tan–1 
17
31

= 2θ – tan–1 
17
31

   = 2 tan–1
3
4

 –  tan–1 
17
31

= 
–1 –1

32. 174tan – tan9 311–
16

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = tan–1  –124 17tan
7 31
−

= 
–1

24 17
7 31tan 24 171 .

7 31

⎛ ⎞−⎜ ⎟
⎜ ⎟
⎜ ⎟+
⎝ ⎠

 = 
4
π

Example 14  Prove that
cot–17 + cot–18 + cot–118 = cot–13

Solution  We  have
    cot–17 + cot–18 + cot–118

= tan–1
1
7

 + tan–1
1
8

 + tan–1
1

18
         (since cot–1 x = tan–1

1
x , if x > 0)

= 
–1 –1

1 1
17 8tan tan1 1 181

7 8

⎛ ⎞+⎜ ⎟
+⎜ ⎟

⎜ ⎟− ×
⎝ ⎠

           (since x . y  =  
1 1.
7 8

 < 1)
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= –1 –13 1tan tan
11 18
+  = 

–1

3 1
11 18tan 3 11

11 18

⎛ ⎞+⎜ ⎟
⎜ ⎟
⎜ ⎟− ×
⎝ ⎠

         (since xy < 1)

= –1 65tan
195

= –1 1tan
3

   = cot–1 3

Example 15 Which is greater, tan 1 or tan–1 1?

Solution From Fig. 2.1, we note that tan x is an increasing function in the interval

,
2 2
−π π⎛ ⎞

⎜ ⎟
⎝ ⎠

, since 1 > 
4
π

 ⇒ tan 1 > tan 
4
π

. This gives

tan 1 > 1

⇒ tan 1 > 1 > 
4
π

⇒ tan 1 > 1 > tan–1 (1).

Example 16 Find the value of

–1 –12sin 2 tan cos(tan 3)
3

⎛ ⎞+⎜ ⎟
⎝ ⎠

.

Solution Let tan–1 
2
3

 = x and tan–1 3  = y  so that tan x = 
2
3

 and tan y = 3 .

Therefore,   
–1 –12sin 2 tan cos(tan 3)

3
⎛ ⎞+⎜ ⎟
⎝ ⎠

=  sin (2x) + cos y

= 2 2

2 tan 1
1 tan 1 tan

x
x y
+

+ +   = ( )2

22. 13
41 1 39

+
+ +

=  
12 1 37
13 2 26

+ = .

– /2�– /2� �/4�/4 �/2�/2
X

tan xtan xY

O
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Example 17 Solve for x

–1 –11 1tan tan , 0
1 2

x x x
x

⎛ ⎞−
= >⎜ ⎟+⎝ ⎠

Solution    From given equation, we have   –1 –112 tan tan
1

x x
x

⎛ ⎞−
=⎜ ⎟+⎝ ⎠

⇒ –1 –1 –12 tan 1 tan tanx x⎡ ⎤− =⎣ ⎦

⇒
–12 3tan

4
xπ⎛ ⎞=⎜ ⎟

⎝ ⎠
 ⇒  –1tan

6
xπ

=

⇒
1
3

x=

Example 18  Find the values of x which satisfy the equation
sin–1 x + sin–1 (1 – x) = cos–1 x.

Solution   From the given equation, we have
sin (sin–1 x + sin–1 (1 – x)) = sin (cos–1x)

⇒ sin (sin–1 x) cos (sin–1 (1 – x)) + cos (sin–1 x) sin (sin–1 (1 – x) ) = sin (cos–1 x)

⇒ 2 2 21– (1– ) (1 ) 1 1x x x x x+ − − = −

⇒ 2 22 – 1 (1 1) 0x x x x x+ − − − =

⇒ ( )2 22 – 1 0x x x x− − =

⇒ x = 0 or 2x – x2 = 1 – x2

⇒ x = 0 or x = 
1
2

.

Example 19  Solve the equation sin–16x + sin–1 6 3 x = 
2
π

−

Solution  From the given equation, we have sin–1 6x = –1sin 6 3
2

xπ
− −
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⇒ sin (sin–1 6x) = sin 
–1sin 6 3

2
xπ⎛ ⎞− −⎜ ⎟

⎝ ⎠

⇒ 6x = – cos (sin–1 6 3 x)

⇒ 6x = – 21 108x− . Squaring, we get
36x2 = 1 – 108x2

⇒ 144x2 = 1 ⇒ x = ± 
1

12

Note that  x = – 
1

12
 is the only root of the equation as x = 

1
12

 does not satisfy it.

Example 20 Show that

2 tan–1 
–1 sin costan .tan tan

2 4 2 cos sin
⎧ ⎫α π β α β⎛ ⎞− =⎨ ⎬⎜ ⎟ α+ β⎝ ⎠⎩ ⎭

Solution L.H.S. = 
–1

2 2

2 tan .tan
2 4 2tan

1 tan tan
2 4 2

α π β⎛ ⎞−⎜ ⎟
⎝ ⎠

α π β⎛ ⎞− −⎜ ⎟
⎝ ⎠

      
–1 –1

2
2since 2 tan tan

1
xx
x

⎛ ⎞
=⎜ ⎟

−⎝ ⎠

=  –1
2

2

1 tan
22 tan

2 1 tan
2tan

1 tan
21 tan

2 1 tan
2

β−α
β

+

β⎛ ⎞−⎜ ⎟α
− ⎜ ⎟β⎜ ⎟+

⎝ ⎠

=  

2

–1
2 2

2

2 tan . 1 tan
2 2tan

1 tan tan 1 tan
2 2 2

α β⎛ ⎞−⎜ ⎟
⎝ ⎠

β α β⎛ ⎞ ⎛ ⎞+ − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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=

2

–1

2 2 2

2 tan 1 tan
2 2tan

1 tan 1 tan 2 tan 1 tan
2 2 2 2

α β⎛ ⎞−⎜ ⎟
⎝ ⎠

β α β α⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

=

2

2 2

–1

2

2 2

2 tan 1 tan
2 2

1 tan 1 tan
2 2tan

1 tan 2 tan
2 2

1 tan 1 tan
2 2

α β
−

α β
+ +

α β
−

+
α β

+ +

=
–1 sin costan

cos sin
⎛ ⎞α β
⎜ ⎟α+ β⎝ ⎠

= R.H.S.

Objective type questions
Choose the correct answer from the given four options in each of the Examples 21 to 41.

Example 21 Which of the following corresponds to the principal value branch of tan–1?

(A) ,
2 2
π π⎛ ⎞−⎜ ⎟

⎝ ⎠
(B) ,

2 2
π π⎡ ⎤−⎢ ⎥⎣ ⎦

(C) ,
2 2
π π⎛ ⎞−⎜ ⎟

⎝ ⎠
 – {0} (D) (0, π)

Solution (A) is the correct answer.

Example 22 The principal value branch of sec–1 is

(A) { }, 0
2 2
π π⎡ ⎤− −⎢ ⎥⎣ ⎦

(B) [ ]0,
2
π⎧ ⎫π −⎨ ⎬

⎩ ⎭

(C) (0, π) (D) ,
2 2
π π⎛ ⎞−⎜ ⎟

⎝ ⎠
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Solution (B) is the correct answer.

Example 23 One branch of cos–1 other than the principal value branch  corresponds to

(A)
3,

2 2
π π⎡ ⎤
⎢ ⎥⎣ ⎦

(B) [ ] 3, 2
2
π⎧ ⎫π π −⎨ ⎬

⎩ ⎭
(C) (0, π) (D) [2π, 3π]

Solution (D) is the correct answer.

Example 24 The value of 
–1 43sin cos

5
⎛ ⎞π⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 is

(A)
3
5
π

(B)
7
5

− π
(C)

10
π

(D) – 
10
π

Solution (D) is the correct answer. –1 –140 3 3sin cos sin cos 8
5 5
π+ π π⎛ ⎞ ⎛ ⎞= π+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= 
–1 –13 3sin cos sin sin

5 2 5
⎛ ⎞π π π⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

= 
–1sin sin

10 10
⎛ ⎞π π⎛ ⎞− = −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
.

Example 25 The principal value of the expression cos–1 [cos (– 680°)] is

(A)
2
9
π

(B)
2
9

− π
(C)

34
9
π

(D)
9
π

Solution (A) is the correct answer. cos–1 (cos (680°)) = cos–1 [cos (720° – 40°)]

= cos–1 [cos (– 40°)] = cos–1 [cos (40°)] = 40° = 
2
9
π

.

Example 26 The value of cot (sin–1x) is

(A)
21 x

x
+

(B) 21

x

x+
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(C)
1
x (D)

21 x
x
−

.

Solution (D) is the correct answer. Let sin–1 x = θ, then sinθ = x

⇒ cosec θ = 
1
x ⇒ cosec2θ = 2

1
x

⇒ 1 + cot2 θ = 2
1
x ⇒ cotθ = 

21 x
x
− .

Example 27 If tan–1x = 
10
π

 for some x ∈ R, then the value of cot–1x is

(A)
5
π

(B)
2
5
π

(C)
3
5
π

(D)
4
5
π

Solution (B) is the correct answer. We know tan–1x + cot–1x = 
2
π

. Therefore

cot–1x = 
2
π

 –  
10
π

 ⇒  cot–1x =  
2
π

 – 
10
π

 =  
2
5
π

.

Example 28 The domain of sin–1 2x is
(A) [0, 1] (B) [– 1, 1]

(C)
1 1,
2 2

⎡ ⎤−⎢ ⎥⎣ ⎦
(D) [–2, 2]

Solution (C) is the correct answer. Let sin–12x = θ  so that 2x = sin θ.

Now – 1 ≤ sin θ ≤ 1,  i.e.,– 1 ≤ 2x ≤ 1 which gives 
1 1
2 2

x− ≤ ≤ .

Example 29 The principal value of sin–1  
3

2
⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠

 is
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(A)
2
3
π

− (B)
3
π

− (C)
4
3
π

(D)
5
3
π

.

Solution (B) is the correct answer.

–1 –1 –13sin sin – sin – sin sin –
2 3 3 3

⎛ ⎞− π π π⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠
.

Example 30 The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively

(A)
2 25 and

4 8
π π

(B) and
2 2
π −π

(C)
2 2

and
4 4
π −π

(D)
2

and 0
4
π

.

Solution (A) is the correct answer. We have

(sin–1x)2 + (cos–1x)2 =  (sin–1x + cos–1x)2 – 2 sin–1x  cos–1 x

= 
2

–1 –12sin sin
4 2

x xπ π⎛ ⎞− −⎜ ⎟
⎝ ⎠

= ( )
2 2–1 –1sin 2 sin

4
x xπ

− π +

=  ( )
22–1 –12 sin sin

2 8
x x

⎡ ⎤π π
− +⎢ ⎥

⎣ ⎦

=  
2 2

–12 sin
4 16

x
⎡ ⎤π π⎛ ⎞− +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

.

Thus, the least value is 
2 2

2 i.e.
16 8

⎛ ⎞π π
⎜ ⎟
⎝ ⎠

 and  the Greatest value is   
2 2

2
2 4 16

⎡ ⎤−π π π⎛ ⎞− +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

,

i.e. 
25

4
π

.

Example 31 Let θ = sin–1 (sin (– 600°), then value of θ is
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(A)
3
π

(B)
2
π

(C)
2
3
π

(D)
2
3

− π
.

Solution (A) is the correct answer.

      
–1 –1 10sin sin 600 sin sin

180 3
π − π⎛ ⎞ ⎛ ⎞− × =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

      = 
–1 2sin sin 4

3
⎡ ⎤π⎛ ⎞− π−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 = 
–1 2sin sin

3
π⎛ ⎞

⎜ ⎟
⎝ ⎠

      = 
–1 –1sin sin sin sin

3 3 3
⎛ ⎞π π π⎛ ⎞ ⎛ ⎞π− = =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
.

Example 32 The domain of the function y = sin–1 (– x2) is
(A) [0, 1] (B) (0, 1)
(C) [–1, 1] (D) φ

Solution (C) is the correct answer.   y = sin–1 (– x2) ⇒   siny = – x2

i.e.  – 1 ≤ – x2 ≤ 1  (since – 1 ≤ sin y ≤ 1)
⇒   1  ≥  x2 ≥ – 1

⇒   0  ≤  x2 ≤  1

⇒   1 . . 1 1x i e x≤ − ≤ ≤

Example 33 The domain of  y = cos–1 (x2 – 4) is
(A) [3, 5] (B) [0, π]

(C) 5, 3 5, 3⎡ ⎤ ⎡ ⎤− − ∩ −⎣ ⎦ ⎣ ⎦ (D) 5, 3 3, 5⎡ ⎤ ⎡ ⎤− − ∪⎣ ⎦ ⎣ ⎦

Solution (D) is the correct answer.  y = cos–1 (x2 – 4 ) ⇒   cosy = x2 – 4
i.e.  – 1 ≤  x2 – 4 ≤ 1  (since – 1 ≤ cos y ≤ 1)

⇒   3  ≤  x2 ≤ 5

⇒   3 5x≤ ≤

⇒   5, 3 3, 5x ⎡ ⎤ ⎡ ⎤∈ − − ∪⎣ ⎦ ⎣ ⎦

Example 34 The domain of the function defined by f (x) =  sin–1x + cosx is
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(A) [–1, 1] (B) [–1, π + 1]

(C) ( )– ,∞ ∞ (D) φ
Solution  (A) is the correct answer. The domain of cos is R and the domain of sin–1 is

[–1, 1]. Therefore, the domain of cosx + sin–1x is R [ ]–1,1∩ , i.e., [–1, 1].

Example 35 The value of sin (2 sin–1 (.6)) is

(A) .48 (B) .96 (C) 1.2 (D) sin 1.2

Solution  (B) is the correct answer. Let sin–1 (.6) = θ, i.e., sin θ = .6.

Now sin (2θ) = 2 sinθ cosθ = 2 (.6) (.8) = .96.

Example 36 If sin–1 x + sin–1 y = 
2
π

, then value of cos–1 x + cos–1 y is

(A)
2
π

(B) π (C) 0 (D)
2
3
π

Solution  (A) is the correct answer. Given that  sin–1 x + sin–1 y = 
2
π

.

Therefore,    
–1 –1– cos – cos

2 2 2
x yπ π π⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⇒ cos–1x + cos–1y  =  
2
π

.

Example 37 The value of tan 
–1 –13 1cos tan

5 4
⎛ ⎞+⎜ ⎟
⎝ ⎠

 is

(A)
19
8

(B)
8

19
(C)

19
12

(D)
3
4

Solution  (A) is the correct answer. tan 
–1 –13 1cos tan

5 4
⎛ ⎞+⎜ ⎟
⎝ ⎠

 = tan 
–1 –14 1tan tan

3 4
⎛ ⎞+⎜ ⎟
⎝ ⎠
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=  tan tan –1 
–1

4 1
19 193 4 tan tan4 1 8 81

3 4

⎛ ⎞+⎜ ⎟ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎜ ⎟− ×

⎝ ⎠

.

Example 38 The value of the expression sin [cot–1 (cos (tan–1 1))] is

(A) 0 (B) 1 (C)
1
3 (D)

2
3

.

Solution (D) is the correct answer.

sin [cot–1 (cos 
4
π

)] = sin [cot–1 
1
2 ]= 

–1 2 2sin sin
3 3

⎡ ⎤
=⎢ ⎥

⎣ ⎦

Example 39 The equation tan–1x – cot–1x = tan–1 
1
3

⎛ ⎞
⎜ ⎟
⎝ ⎠

 has

(A) no solution (B) unique solution
(C) infinite number of solutions (D) two solutions

Solution  (B) is the correct answer. We have

tan–1x – cot–1x =  
6
π

 and  tan–1x + cot–1x =  
2
π

Adding them, we get 2tan–1x = 
2
3
π

               ⇒   tan–1x =  
3
π

  i.e., 3x= .

Example 40 If 2α≤ sin–1x + cos–1x ≤β , then

(A) ,
2 2
−π π

α= β= (B) 0,α= β=π

(C)
3,

2 2
−π π

α= β= (D) 0, 2α= β= π
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Solution  (B) is the correct answer.  We have 
2
−π

≤  sin–1 x ≤  
2
π

⇒
2
−π

+ 
2
π

 ≤  sin–1x + 
2
π

  ≤   
2
π

 + 
2
π

⇒ 0  ≤  sin–1x +  (sin–1x + cos–1x) ≤  π

⇒ 0  ≤  2sin–1x +  cos–1x ≤  π

Example 41 The value of tan2 (sec–12) + cot2 (cosec–13) is
(A) 5 (B) 11 (C) 13 (D) 15

Solution  (B) is the correct answer.

tan2 (sec–12) + cot2 (cosec–13) = sec2 (sec–12) – 1 + cosec2 (cosec–13) – 1

= 22  × 1 + 32 – 2 = 11.

2.3 EXERCISE

Short Answer (S.A.)

1. Find the value of 
–1 –15π 13πtan tan cos cos

6 6
⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.

2. Evaluate –1 – 3cos cos
2 6

     
           

.

3. Prove that 
–1cot – 2cot 3 7

4
        .

4. Find the value of  
–1 –1 –11 1 –tan – cot tan sin

23 3
                           .

5. Find the value of tan–1 
2πtan
3

⎛ ⎞
⎜ ⎟
⎝ ⎠

.

6. Show that  2tan–1 (–3) = 
–
2
 

 + 
–1 –4tan

3
⎛ ⎞
⎜ ⎟
⎝ ⎠

.
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7. Find the real solutions of the equation

( )–1 –1 2 πtan 1 sin 1
2

x x x x+ + + + = .

8. Find the value of the expression sin ( )–1 –112 tan cos tan 2 2
3

⎛ ⎞+⎜ ⎟
⎝ ⎠

.

9. If 2 tan–1 (cos θ) = tan–1 (2 cosec θ), then show that θ = 
π
4 ,

where n is any integer.

10. Show that 
–1 –11 1cos 2 tan sin 4 tan

7 3
⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.

11. Solve the following equation   ( )–1 –1 3cos tan sin cot
4

x ⎛ ⎞= ⎜ ⎟
⎝ ⎠

.

Long Answer (L.A.)

12. Prove that 
2 2

–1 –1 2

2 2

1 1– 1tan cos
4 21 – 1–

x x
x

x x
     

    
   

13. Find the simplified form of  
–1 3 4cos cos sin

5 5
x x       , where x ∈ 

–3 ,
4 4
    

    
.

14. Prove that –1 –1 –18 3 77sin sin sin
17 5 85

  .

15. Show that –1 –1 –15 3 63sin cos tan
13 5 16

  .

16. Prove that 
–1 –1 11 2 1tan tan sin

4 9 5
−+ = .

17. Find the value of –1 –11 14 tan – tan
5 239 .
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18. Show that –11 3 4 – 7tan sin
2 4 3

       
 and justify why the other value 

4 7
3
+

is ignored?
19. If a1, a2, a3,...,an is an arithmetic progression with common difference d, then

evaluate the following expression.

–1 –1 –1 –1

1 2 2 3 3 4 –1

tan tan tan tan ... tan
1 1 1 1 n n

d d d d
a a a a a a a a

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
+ + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

.

Objective Type Questions

Choose the correct answers from the given four options in each of the Exercises from
20 to 37 (M.C.Q.).

20. Which of the following is the principal value branch of cos–1x?

(A)
–π π,
2 2

⎡ ⎤
⎢ ⎥⎣ ⎦

(B) (0, π)

(C) [0, π] (D) (0, π) – 
π
2

⎧ ⎫
⎨ ⎬
⎩ ⎭

21. Which of the following is the principal value branch of cosec–1x?

(A)
–π π,
2 2

⎛ ⎞
⎜ ⎟
⎝ ⎠

(B) [0, π] – 
π
2

⎧ ⎫
⎨ ⎬
⎩ ⎭

(C)
–π π,
2 2

⎡ ⎤
⎢ ⎥⎣ ⎦

(D)
–π π,
2 2

⎡ ⎤
⎢ ⎥⎣ ⎦

 – {0}

22. If 3tan–1 x + cot–1 x = π, then x equals

(A) 0 (B) 1 (C) –1 (D)
1
2 .

23. The value of sin–1 
33cos

5
     

         is

(A)
3π
5

(B)
–7

5
π

(C)
10
π

(D)
–
10
π
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24. The domain of the function cos–1 (2x – 1) is
(A) [0, 1] (B) [–1, 1]
(C) ( –1, 1) (D) [0, π]

25. The domain of the function defined by f (x) = sin–1 –1x  is
(A) [1, 2] (B) [–1, 1]
(C) [0, 1] (D) none of these

26. If cos 
–1 –12sin cos 0

5
x⎛ ⎞+ =⎜ ⎟

⎝ ⎠
, then x is equal to

(A)
1
5 (B)

2
5 (C) 0 (D) 1

27. The value of sin (2 tan–1 (.75)) is equal to
(A) .75 (B) 1.5 (C) .96 (D) sin 1.5

28. The value of 
–1 3cos cos

2
   

      is equal to

(A)
2
π

(B)
3
2
π

(C)
5
2
π

(D)
7
2
π

29. The value of the expression   2 sec–1 2 + sin–1 
1
2

  
     is

(A)
π
6 (B)

5π
6 (C)

7π
6 (D) 1

30. If tan–1 x + tan–1y = 
4π
5 , then cot–1 x + cot–1 y equals

(A)
π
5 (B)

2π
5 (C)

3
5
 

(D) π

31. If sin–1 
2

–1 –1
2 2 2

2 1– 2cos tan
1 1 1–

a a x
a a x

      
                , where a, x ∈ ]0, 1, then

the value of x is

(A) 0 (B) 2
a

(C) a (D) 2

2
1–

a
a
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32. The value of cot 
–1 7cos

25
    

        
 is

(A)
25
24 (B)

25
7 (C)

24
25 (D)

7
24

33. The value of the expression tan 
–11 2cos

2 5
  
     is

(A) 2 5 (B) 5 – 2

(C)
5 2
2
 

(D) 5 2 

1– cosHint :tan
2 1 cos

⎡ ⎤θ θ
=⎢ ⎥+ θ⎣ ⎦

34. If | x | ≤  1, then 2 tan–1 x + sin–1
2

2
1

x
x

  
      is equal to

(A) 4 tan–1 x (B) 0 (C) 2
 

(D) π

35. If  cos–1 α + cos–1 β + cos–1 γ = 3π, then α (β + γ) + β (γ + α) + γ (α + β)
equals
(A) 0 (B) 1 (C) 6 (D) 12

36. The number of real solutions of the equation

–11 cos2 2 cos (cos )in ,
2

x x π⎡ ⎤+ = π⎢ ⎥⎣ ⎦
 is

(A) 0 (B) 1 (C) 2 (D) Infinite
37. If cos–1x > sin–1x, then

(A)
1 1
2

x< ≤ (B)
10
2

x≤ <

(C)
11
2

x− ≤ < (D) x > 0
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Fill in the blanks in each of the Exercises 38 to 48.

38. The principal value of cos–1 
1–
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is__________.

39. The value of sin–1 
3sin
5
π⎛ ⎞

⎜ ⎟
⎝ ⎠

 is__________.

40. If cos (tan–1 x + cot–1 3 ) = 0, then value of x is__________.

41. The set of values of sec–1 
1
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is__________.

42. The principal value of tan–1 3  is__________.

43. The value of cos–1 
14cos

3
π⎛ ⎞

⎜ ⎟
⎝ ⎠

 is__________.

44. The value of cos (sin–1 x + cos–1 x), |x|  ≤ 1 is______ .

45. The value of expression tan 
–1 –1sin cos

2
x x⎛ ⎞+

⎜ ⎟
⎝ ⎠

,when x = 
3

2
 is_________.

46. If y = 2 tan–1 x + sin–1
2

2
1

x
x

  
      for all x, then____< y <____.

47. The result tan–1x – tan–1y = tan–1 1
x y

xy
⎛ ⎞−
⎜ ⎟+⎝ ⎠

 is true when value of xy is _____

48. The value of cot–1 (–x) for all x ∈ R in terms of cot–1x is _______.

State True or False for the statement in each of the Exercises 49 to 55.
49. All trigonometric functions have inverse over their respective domains.
50. The value of the expression (cos–1 x)2 is equal to sec2 x.
51. The domain of trigonometric functions can be restricted to any one of their

branch (not necessarily principal value) in order to obtain their inverse functions.
52. The least numerical value, either positive or negative of angle θ is called principal

value of the inverse trigonometric function.
53. The graph of inverse trigonometric function can be obtained from the graph of

their corresponding trigonometric function by interchanging x and y axes.
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54. The minimum value of n for which tan–1 ,
4

n nπ
> ∈

π
N , is valid is 5.

55. The principal value of sin–1 
–1 1cos sin

2
⎡ ⎤⎛ ⎞

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 is 

3
π

.



3.1 Overview

3.1.1 A matrix is an ordered rectangular array of numbers (or functions). For example,

A = 

4 3
4 3
3 4

x

x

x

  
  
  
    

The numbers (or functions) are called the elements or the entries of the matrix.

The horizontal lines of elements are said to constitute rows of the matrix and the
vertical lines of elements are said to constitute columns of the matrix.

3.1.2 Order of a Matrix

A matrix having m rows and n columns is called a matrix of order m × n or simply
m × n matrix (read as an m by n matrix).

In the above example, we have A as a matrix of order 3 × 3 i.e.,
3 × 3 matrix.

In general, an m × n matrix has the following rectangular array :

A = [a
ij
]

m × n  = 

11 12 13 1

21 22 23 2

1 2 3

n

n

m m m mn m n

a a a a

a a a a

a a a a
×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

…
…

#
…

1≤ i ≤ m, 1≤ j ≤ n  i, j ∈ N.

The element, a
ij
 is an element lying in the ith row and jth column and is known as the

(i, j)th element of A. The number of elements in an m × n matrix will be equal to mn.

3.1.3 Types of Matrices

(i) A matrix is said to be a row matrix if it has only one row.

Chapter 3
Matrices
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(ii) A matrix is said to be a column matrix if it has only one column.

(iii) A matrix in which the number of rows are equal to the number of columns,
is said to be a square matrix. Thus, an m × n matrix is said to be a square
matrix if m = n and is known as a square matrix of order ‘n’.

(iv) A square matrix B = [b
ij
]

n×n
 is said to be a diagonal matrix if its all  non

diagonal elements are zero, that is a matrix B = [b
ij
]

n×n
 is said to be a

diagonal matrix if b
ij
 = 0, when i ≠ j.

(v) A diagonal matrix is said to be a scalar matrix if its diagonal elements are
equal, that is, a square matrix B = [b

ij
]

n×n
 is said to be a scalar matrix if

b
ij
 = 0, when i ≠ j

b
ij
 = k, when i = j, for some constant k.

(vi) A square matrix in which elements in the diagonal are all 1 and rest are
all zeroes is called an identity matrix.

In other words, the square matrix A = [a
ij
]

n×n 
is an identity matrix, if

a
ij
 = 1, when i = j and a

ij
 = 0, when i ≠ j.

(vii) A matrix is said to be zero matrix or null matrix if all its elements are
zeroes. We denote zero matrix by O.

(ix) Two matrices A = [a
ij
] and B = [b

ij
] are said to be equal if

(a)  they are of the same order, and

(b) each element of A is equal to the corresponding element of B, that is,
a

ij
 = b

ij
 for all i and j.

3.1.4 Additon of Matrices

Two matrices can be added if they are of the same order.

3.1.5 Multiplication of Matrix by a Scalar

If  A = [a
ij
] 

m×n
 is a matrix and k is a scalar, then kA is another matrix which is obtained

by multiplying each element of A by a scalar k, i.e. kA = [ka
ij
]

m×n

3.1.6 Negative of a Matrix

The negative of a matrix A is denoted by –A. We define –A = (–1)A.

3.1.7 Multiplication of Matrices

The multiplication of two matrices A and B is defined if the number of columns of A is
equal to the number of rows of B.
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Let A = [a
ij
] be an m × n matrix and B = [b

jk
] be an n × p matrix. Then the product of

the matrices A and B is the matrix C of order m × p. To get the
(i, k)th element c

ik
 of the matrix C, we take the ith row of A and kth column of B,

multiply them elementwise and take the sum of all these products i.e.,

c
ik
 = a

i1 b1k
 + a

i2 b2k
 + a

i3 b3k
 + ... + a

in
 b

nk

The matrix C = [c
ik
]

m×p
 is the product of A and B.

Notes:

1. If AB is defined, then BA need not be defined.

2. If A, B are, respectively m × n, k × l matrices, then both AB and BA are
defined if and only if n = k and l = m.

3. If AB and BA are both defined, it is not necessary that AB = BA.

4. If the product of two matrices is a zero matrix, it is not necessary that
one of the matrices is a zero matrix.

5. For three matrices A, B and C of the same order, if A = B, then
AC = BC, but converse is not true.

6. A. A = A2, A. A. A = A3, so on

3.1.8 Transpose of a Matrix

1. If A = [a
ij
] be an m × n matrix, then the matrix obtained by interchanging

the rows and columns of A is called the transpose of A.

Transpose of the matrix A is denoted by A′ or (AT). In other words, if
A = [a

ij
]

m×n
, then AT = [a

ji
]

n×m
.

2. Properties of transpose of the matrices

For any matrices A and B of suitable orders, we have

(i)   (AT)T = A,

(ii)  (kA)T = kAT (where k is any constant)

(iii)  (A + B)T = AT + BT

(iv)  (AB)T = BT AT

3.1.9 Symmetric Matrix and Skew Symmetric Matrix

(i) A square matrix A = [a
ij
] is said to be symmetric if AT = A, that is,

a
ij
 = a

ji
 for all possible values of i and j.



MATRICES    45

(ii) A square matrix A = [a
ij
] is said to be skew symmetric matrix if AT = –A,

that is a
ji
 = –a

ij
 for all possible values of i and j.

Note : Diagonal elements of a skew symmetric matrix are zero.

(iii) Theorem 1: For any square matrix A with real number entries, A + AT is
a symmetric matrix and A – AT is a skew symmetric matrix.

(iv) Theorem 2: Any square matrix A can be expressed as the sum of a
symmetric matrix and a skew symmetric matrix, that is

T T(A +A ) (A A )A = +
2 2

−

3.1.10 Invertible Matrices

(i) If A is a square matrix of order m × m, and if there exists another square
matrix B of the same order m × m, such that AB = BA = I

m
, then, A is said

to be invertible matrix and B is called the inverse matrix of A and it is
denoted by A–1.

Note :

1. A rectangular matrix does not possess its inverse, since for the products
BA and AB to be defined and to be equal, it is necessary that matrices A
and B should be square matrices of the same order.

2. If B is the inverse of A, then A is also the inverse of B.

(ii) Theorem 3 (Uniqueness of inverse) Inverse of a square matrix, if it
exists, is unique.

(iii) Theorem 4 : If A and B are invertible matrices of same order, then
(AB)–1 = B–1A–1.

3.1.11 Inverse of a Matrix using Elementary Row or Column Operations

To find A–1 using elementary row operations, write A = IA and apply a sequence of
row operations on (A = IA) till we get, I = BA. The matrix B will be the inverse of A.
Similarly, if we wish to find A–1 using column operations, then, write A = AI and apply a
sequence of column operations on A = AI till we get, I = AB.

Note : In case, after applying one or more elementary row (or column) operations on
A = IA (or A = AI), if we obtain all zeros in one or more rows of the matrix A on L.H.S.,
then A–1 does not exist.
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3.2 Solved Examples

Short Answer (S.A.)

Example 1 Construct a matrix A = [a
ij
]2×2 whose elements a

ij
 are given by

a
ij
 = 2 sinixe jx .

Solution For i = 1, j = 1, a 11 = e2x sin x

For i = 1, j = 2, a 12 = e2x sin 2x

For i = 2, j = 1, a 21 = e4x sin x

For i = 2, j = 2, a 22 = e4x sin 2x

Thus A = 
2 2

4 4

sin sin 2
sin sin 2

x x

x x

e x e x

e x e x

⎡ ⎤
⎢ ⎥
⎣ ⎦

Example 2  If A = 
2 3
1 2

  
  
  

, B = 
1 3 2
4 3 1

  
  
  

, C = 
1
2

  
  
  

, D = 
4 6 8
5 7 9

  
  
  

, then

which of the sums A + B, B + C, C + D and B + D is defined?

Solution Only B + D is defined since matrices of the same order can only be added.

Example 3 Show that a matrix which is both symmetric and skew symmetric is a zero
matrix.

Solution  Let A = [a
ij
] be a matrix which is both symmetric and skew symmetric.

Since A is a skew symmetric matrix, so A′ = –A.

Thus for all i and j, we have a
ij
 = – a

ji
. (1)

Again, since A is a symmetric matrix, so A′ = A.

Thus, for all i and j, we have

a
ji
 = a

ij
(2)

Therefore, from (1) and (2), we get

a
ij
 = –a

ij
 for all i and j

or 2a
ij
 = 0,

i.e., a
ij = 0 for all i and j. Hence A is a zero matrix.
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Example 4  If [ ] 1 2
2 3       =  O

–3 0 8
x

x
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

, find the value of  x.

Solution  We have

[ ] 1 2
2 3       =  O

–3 0 8
x

x
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 ⇒     2 9 4     =  0
8
x

x x
  

   
  

or   22 9 32   =  0x x x        ⇒  22 23 0x x  

or (2 23) 0x x     ⇒ x = 0, x = 
23
2

 

Example 5  If A is 3 × 3 invertible matrix, then show that for any scalar k (non-zero),

kA is invertible and (kA)–1 = –11 A
k

Solution   We have

(kA) 
–11 A

k
  
     =  

1. k
k

  
     (A. A–1) = 1 (I) = I

Hence (kA) is inverse of 
–11 A

k
  
    or (kA)–1 = –11 A

k

Long Answer  (L.A.)

Example 6  Express the matrix A as the sum of a symmetric and a skew symmetric
matrix, where

A = 

2 4 6
7 3 5
1 2 4

   
  
  
     

.

Solution  We have

A = 

2 4 6
7 3 5
1 2 4

   
  
  
     

, then   A′ = 

2 7 1
4 3 2
6 5 4
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Hence
A + A

2
′

 = 
1
2  

11 52
2 24 11 5

11 311 6 3  = 3
2 2

5 3 8 5 3 4
2 2

   
  

     
    
    
          

    

and
A – A

2
′
 = 

1
2  

3 70
2 20 3 7

3 73 0 7  = 0
2 2

7 7 0 7 7 0
2 2

    
  

      
    
    
          

    

Therefore,

11 5 3 72 0
2 2 2 2 2 4 6

A A A A 11 3 3 73  + 0 7 3 5 A
2 2 2 2 2 2

1 2 45 3 7 74 0
2 2 2 2

− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

−⎡ ⎤⎢ ⎥ ⎢ ⎥
′ ′+ − ⎢ ⎥⎢ ⎥ ⎢ ⎥+ = = =⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎣ ⎦− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

.

Example 7  If A = 

1 3 2
2 0 1
1 2 3

  
     
    

, then show that A satisfies the equation

A3–4A2–3A+11I = O.

Solution A2 = A × A =  

1 3 2 1 3 2
2 0 1  × 2 0 1
1 2 3 1 2 3
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= 

1 6 2 3 0 4 2 3 6
2 0 1 6 0 2 4 0 3
1 4 3 3 0 6 2 2 9

+ + + + − +⎡ ⎤
⎢ ⎥+ − + − + −⎢ ⎥
⎢ ⎥+ + + + − +⎣ ⎦

= 

9 7 5
1 4 1
8 9 9

  
  
  
    

and A3 = A2 × A = 

9 7 5 1 3 2
1 4 1  × 2 0 1
8 9 9 1 2 3

    
         
        

= 

9 14 5 27 0 10 18 7 15
1 8 1 3 0 2 2 4 3

8 18 9 24 0 18 16 9 27

        
          
          

= 

28 37 26
10 5 1
35 42 34

  
  
  
    

Now A3 – 4A2 – 3A + 11(I)

=  

28 37 26 9 7 5 1 3 2 1 0 0
10 5 1  – 4 1 4 1  –3 2 0 1  +11 0 1 0
35 42 34 8 9 9 1 2 3 0 0 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=  

28 36 3 11 37 28 9 0 26 20 6 0
10 4 6 0 5 16 0 11 1 4 3 0
35 32 3 0 42 36 6 0 34 36 9 11

− − + − − + − − +⎡ ⎤
⎢ ⎥− − + − + + − + +⎢ ⎥
⎢ ⎥− − + − − + − − +⎣ ⎦
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= 

0 0 0
0 0 0
0 0 0

  
  
  
    

  = O

Example 8  Let  
2 3

A =
–1 2
⎡ ⎤
⎢ ⎥
⎣ ⎦

. Then show that A2 – 4A + 7I = O.

Using this result calculate A5 also.

Solution  We have 
2 2 3 2 3

A
1 2 1 2

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 = 
1 12
4 1

⎡ ⎤
⎢ ⎥−⎣ ⎦

,

      
8 12

4A =
4 8
− −⎡ ⎤

− ⎢ ⎥−⎣ ⎦
  and 

7 0
7 I=

0 7
⎡ ⎤
⎢ ⎥
⎣ ⎦

.

Therefore, A2 – 4A + 7I 
1 8 7 12 12 0

=
4 4 0 1 8 7
− + − +⎡ ⎤

⎢ ⎥− + + − +⎣ ⎦
 

0 0
O

0 0
⎡ ⎤

= =⎢ ⎥
⎣ ⎦

⇒ A2 = 4A – 7I

Thus A3 = A.A2 = A (4A – 7I)  = 4 (4A – 7I) – 7A

= 16A – 28I – 7A  = 9A – 28I

and so         A5 = A3A2

= (9A – 28I) (4A – 7I)

= 36A2 – 63A – 112A + 196I

=  36 (4A – 7I) – 175A + 196I

= – 31A – 56I

            
2 3 1 0

31 56
1 2 0 1

⎡ ⎤ ⎡ ⎤
=− −⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

118 93
31 118
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
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Objective Type Questions

Choose the correct answer from the given four options in Examples 9 to 12.

Example 9  If A and B are square matrices of the same order, then

(A + B) (A – B) is equal to

(A) A2 – B2 (B) A2 – BA – AB – B2

(C) A2 – B2 + BA – AB (D) A2 – BA + B2 + AB

Solution  (C) is correct answer. (A + B) (A – B) = A (A – B) + B (A – B)
= A2 – AB + BA – B2

Example 10  If A = 
2 1 3
4 5 1

   
     

and B = 

2 3
4 2
1 5

  
     
    

, then

(A) only AB is defined       (B) only BA is defined

(C) AB and BA both are defined   (D) AB and BA both are not defined.

Solution   (C) is correct answer. Let A = [a
ij
]2×3 B = [b

ij
]3×2

.
 Both AB and BA are

defined.

Example 11  The matrix A = 

0 0 5
0 5 0
5 0 0

  
  
  
    

 is a

(A) scalar matrix (B) diagonal matrix

(C) unit matrix (D) square matrix

Solution   (D) is correct answer.

Example 12  If A and B are symmetric matrices of the same order, then (AB′ –BA′)
is a

(A) Skew symmetric matrix (B) Null matrix

(C) Symmetric matrix (D) None of these

Solution  (A) is correct answer since

    (AB′ –BA′)′ = (AB′)′ – (BA′)′
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       = (BA′ – AB′)

       = – (AB′ –BA′)

Fill in the blanks in each of the Examples 13 to 15:

Example 13  If A and B are two skew symmetric matrices of same order, then AB is
symmetric matrix if ________.

Solution  AB  = BA.

Example 14 If A and B are matrices of same order, then (3A –2B)′ is equal to
________.

Solution 3A′ –2B′.

Example 15 Addition of matrices is defined if order of the matrices is ________

Solution Same.

State whether the statements in each of the Examples 16 to 19 is true or false:

Example 16 If two matrices A and B are of the same order, then 2A + B = B + 2A.

Solution  True

Example 17  Matrix subtraction is associative

Solution  False

Example 18  For the non singular matrix A, (A′)–1 = (A–1)′.

Solution  True

Example 19  AB = AC ⇒ B = C for any three matrices of same order.

Solution  False

3.3 EXERCISE

Short Answer (S.A.)

1. If a matrix has 28 elements, what are the possible orders it can have? What if it
has 13 elements?

2. In the matrix A = 
2

1

2 3
20 5

5

a x

x y

  
  
  

   
   
  
  

, write :
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(i) The order of the matrix A

(ii) The number of elements

(iii) Write elements  a23, a31, a12

3. Construct a2 × 2 matrix where

(i) a
ij
 = 

2( 2 )
2

i j 

(ii) a
ij
 = | 2 3 |i j  

4. Construct a 3 × 2 matrix whose elements are given by a
ij
 = ei.xsinjx

5. Find values of a and b if A = B, where

A = 
4 3

8 6
a b   

     
, B = 

2

2

2 2 2
8 5

a b

b b

    
     

6. If possible, find the sum of the matrices A and B, where A = 
13
32

  
  
  

,

and B =  6
x y z

a b

  
  
  

7. If    X = 
3 1 1
5 2 3

   
      

 and  Y = 
2 1 1
7 2 4

   
  
  

, find

(i) X +Y (ii) 2X – 3Y

(iii) A matrix Z such that X + Y + Z is a zero matrix.

8. Find non-zero values of x satisfying the matrix equation:

22 2 8 5 24( 8)
2 2

3 4 4 6(10)
x x x

x
x x x

⎡ ⎤+⎡ ⎤ ⎡ ⎤
+ = ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
.

9. If A = 
0 1
1 1

  
  
  

 and B = 
0 1
1 0

   
  
  

, show that (A + B) (A – B) ≠ A2 – B2.
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10. Find the value of x if

  1 1x  

1 3 2
2 5 1

15 3 2

  
  
  
    

1
2
x

  
  
  
    

 = O.

11. Show that A = 
5 3
1 2

  
      

 satisfies the equation A2 – 3A – 7I = O and hence

find A–1.

12. Find the matrix A satisfying the matrix equation:

2 1 3 2 1 0
A  = 

3 2 5 3 0 1
       

             

13. Find A, if 

4
1
3

  
  
  
    

  A = 

4 8 4
1 2 1
3 6 3

   
     
     

14. If A = 

3 4
1 1
2 0

   
  
  
    

and B = 
2 1 2
1 2 4

  
  
  

, then verify (BA)2 ≠ B2A2

15. If possible, find BA and AB, where

A = 
2 1 2
1 2 4

  
  
  

 , B =  

4 1
2 3
1 2

  
  
  
    

.

16. Show by an example that for  A ≠ O, B ≠ O, AB = O.

17. Given  A = 
2 4 0
3 9 6
⎡ ⎤
⎢ ⎥
⎣ ⎦

 and B = 

1 4
2 8
1 3

  
  
  
    

. Is (AB)′ = B′A′?

18. Solve for x and y:
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2 3 8
O

1 5 11
x y

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.

19. If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y

2X + 3Y  = 
2 3
4 0

  
  
  

, 3X + 2Y = 
2 2

1 5
   

     
.

20. If A =   3 5 ,  B =   7 3 , then find a non-zero matrix C such that AC = BC.

21. Give an example of matrices A, B and C such that AB = AC, where A is non-
zero matrix, but B ≠ C.

22. If  A = 
1 2
2 1

  
     

,   B = 
2 3
3 4

  
     

 and   C = 
1 0
1 0

  
     

, verify :

(i)    (AB) C = A (BC)   (ii)   A (B + C) = AB + AC.

23. If P = 

0 0
0 0
0 0

x

y

z

  
  
  
    

 and Q = 

0 0
0 0
0 0

a

b

c

  
  
  
    

,  prove that

PQ = 

0 0
0 0
0 0

xa

yb

zc

  
  
  
    

 = QP.

24. If :    2 1 3    

1 0 1
1 1 0

0 1 1

    
     
    

 

1
0
1

  
  
  
     

= A, find A.

25. If A =   2 1 ,  B = 
5 3 4
8 7 6

  
  
  

and C = 
1 2 1

1 0 2
   

  
  

, verify that

A (B + C) = (AB + AC).



56    MATHEMATICS

26. If A = 

1 0 1
2 1 3
0 1 1

   
  
  
    

, then verify that A2 + A  = A (A + I), where I is 3 × 3 unit

matrix.

27. If A = 
0 1 2
4 3 4

   
     

 and    B = 

4 0
1 3
2 6

  
  
  
    

, then verify  that :

(i) (A′)′ = A

(ii) (AB)′ = B′A′

(iii) (kA)′ = (kA′).

28. If A = 

1 2
4 1
5 6

  
  
  
    

,   B = 

1 2
6 4
7 3

  
  
  
    

, then  verify that :

(i) (2A + B)′ = 2A′ + B′

(ii) (A – B)′ = A′ – B′.

29. Show that A′A and AA′ are both symmetric matrices for any matrix A.

30. Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2 ?  Give
reasons.

31. Show that if A and B are square matrices such that AB = BA, then

(A + B)2 = A2 + 2AB + B2.

32. Let A = 
1 2
1 3

  
     

,   B = 
4 0
1 5

  
  
  

,   C  = 
2 0
1 2

  
     

 and a = 4, b = –2.

Show that:

(a) A + (B + C) = (A + B) + C

(b) A (BC) = (AB) C
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(c) (a + b)B = aB + bB

(d) a (C–A) = aC – aA

(e) (AT)T = A

(f) (bA)T = b AT

(g) (AB)T = BT AT

(h) (A –B)C = AC – BC

(i) (A – B)T = AT – BT

33. If A = 
cosθ sinθ
– inθ cosθs

⎡ ⎤
⎢ ⎥
⎣ ⎦

, then show that A2 = 
cos2θ sin2θ
– in2θ cos2θs

⎡ ⎤
⎢ ⎥
⎣ ⎦

.

34. If A = 
0

0
x

x

   
  
  

,   B = 
0 1
1 0

  
  
  

  and x2 = –1, then show that (A + B)2 = A2 + B2.

35. Verify that A2 = I when A = 

0 1 1
4 3 4
3 3 4

   
     
     

.

36. Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square
matrix A.

37. Find inverse, by elementary row operations (if possible), of the following matrices

(i)
1 3
5 7

  
     

(ii)
1 3
2 6

   
     

.

38. If 
4

6
xy

z x y

  
      

 = 
8
0 6

w  
  
  

, then find values of x, y, z and w.

39. If A = 
1 5
7 12

  
  
  

 and B = 
9 1
7 8

  
  
  

, find a matrix C such that 3A + 5B + 2C is a null

matrix.
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40. If  A = 
3 5
4 2

   
     

, then find A2 – 5A – 14I. Hence, obtain A3.

41. Find the values of a, b, c and d, if

3
a b

c d

  
  
  

 = 
6

1 2
a

d

  
     

  + 
4

3
a b

c d

   
     

.

42. Find the matrix A such that

2 1
1 0
3 4

   
  
  
     

  A  = 

1 8 10
1 2 5
9 22 15

     
      
    

.

43. If A = 
1 2
4 1

  
  
  

,  find A2 + 2A + 7I.

44. If A =  
cosα sinα
sinα cosα

⎡ ⎤
⎢ ⎥−⎣ ⎦

, and A – 1 = A′ , find value of α.

45. If the matrix 

0 3
2 1

1 0

a

b

c

  
     
    

 is a skew symmetric matrix, find the values of a, b and c.

46. If P (x) = 
cos sin
sin cos

x x

x x

⎡ ⎤
⎢ ⎥−⎣ ⎦

, then show that

P (x) . P (y) = P (x + y) = P (y) . P (x).

47. If A is square matrix such that A2 = A, show that (I + A)3 = 7A + I.

48. If A, B are square matrices of same order and B is a skew-symmetric matrix,
show that A′BA is skew symmetric.

Long Answer (L.A.)

49. If AB = BA for any two sqaure matrices, prove by mathematical induction that
(AB)n = An Bn.
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50. Find x, y, z if 
0 2

A
y z

x y z

x y z

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 satisfies A′ = A–1.

51. If possible, using elementary row transformations, find the inverse of the following
matrices

(i)  

2 1 3
5 3 1
3 2 3

   
     
     

    (ii)  

2 3 3
1 2 2

1 1 1

   
      
     

 (iii)  

2 0 1
5 1 0
0 1 3

   
  
  
    

52. Express the matrix 

2 3 1
1 1 2
4 1 2

  
     
    

 as the sum of a symmetric and a skew symmetric

matrix.

Objective Type Questions

Choose the correct answer from the given four options in each of the Exercises
53 to 67.

53. The matrix P = 

0 0 4
0 4 0
4 0 0

  
  
  
    

 is a

(A) square matrix (B) diagonal matrix

(C) unit matrix (D) none

54. Total number of possible matrices of order 3 × 3 with each entry 2 or 0 is

(A) 9 (B) 27 (C) 81 (D) 512

55. If 
2 4
5 7 4

x y x

x x

   
     

 = 
7 7 13

6
y

y x

   
     

, then the value of x + y is

(A) x = 3, y = 1 (B) x = 2, y = 3

(C) x = 2, y = 4 (D) x = 3, y = 3
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56. If A = 

1 1

1 1

sin ( ) tan
1

sin cot ( )

x
x

x
x

 
 

 
 

 

  

  

    
        

    
        

, B = 

1 1

1 1

cos ( ) tan
1

sin tan ( )

x
x

x
x

 
 

 
 

 

  

  

             
             

, then

A – B is equal to

(A) I (B) O (C) 2I (D) 
1 I
2

57. If A and B are two matrices of the order 3 × m and 3 × n, respectively, and
m = n, then the order of matrix (5A – 2B) is

(A) m × 3 (B) 3 × 3 (C) m × n (D) 3 × n

58. If A = 
0 1
1 0

  
  
  

, then A2 is equal to

(A)
0 1
1 0

  
  
  

(B)
1 0
1 0

  
  
  

(C)
0 1
0 1

  
  
  

(D)
1 0
0 1

  
  
  

59. If matrix A = [a
ij
]2 × 2, where a

ij
 = 1 if i ≠ j

       = 0 if  i  = j

then A2 is equal to

(A) I (B) A (C) 0 (D) None of these

60. The matrix 

1 0 0
0 2 0
0 0 4

  
  
  
    

 is a

(A) identity  matrix (B) symmetric matrix

(C) skew symmetric matrix (D) none of these
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61. The matrix 

0 5 8
5 0 12
8 12 0

   
  
  
      

 is a

(A) diagonal matrix (B) symmetric matrix

(C) skew symmetric matrix (D) scalar matrix

62. If A is matrix of order m × n and B is a matrix such that AB′ and B′A are both
defined, then order of matrix B is

(A) m × m (B) n × n

(C) n × m (D) m × n

63. If A and B are matrices of same order, then (AB′–BA′) is a

(A) skew symmetric matrix (B) null matrix

(C) symmetric matrix (D) unit matrix

64. If A is a square matrix such that A2 = I, then (A–I)3 + (A + I)3 –7A is equal to

(A) A (B) I – A (C) I + A (D) 3A

65. For any two matrices A and B, we have

(A) AB = BA (B) AB ≠ BA

(C) AB = O (D) None of the above

66. On using elementary column operations C2 → C2 – 2C1 in the following matrix
equation

1 3
2 4

   
  
  

 = 
1 1
0 1

   
  
  

  
3 1
2 4

  
  
  

, we have :

(A)
1 5
0 4

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 = 
1 1
2 2

   
     

  
3 5
2 0

−⎡ ⎤
⎢ ⎥
⎣ ⎦

(B)
1 5
0 4

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 = 
1 1
0 1

   
  
  

  
3 5
0 2

−⎡ ⎤
⎢ ⎥−⎣ ⎦
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(C)
1 5
2 0

   
  
  

 = 
1 3
0 1

   
  
  

  
3 1
2 4

  
     

(D)
1 5
2 0

   
  
  

 = 
1 1
0 1

   
  
  

  
3 5
2 0

−⎡ ⎤
⎢ ⎥
⎣ ⎦

67. On using elementary row operation R1 → R1 – 3R2 in the following matrix equation:

4 2
3 3

  
  
  

 = 
1 2
0 3

  
  
  

  
2 0
1 1

  
  
  

, we have :

(A)
5 7

3 3
    

  
  

 = 
1 7
0 3

   
  
  

  
2 0
1 1

  
  
  

(B)
5 7

3 3
    

  
  

 = 
1 2
0 3

  
  
  

 
1 3

1 1
    

  
  

(C)
5 7

3 3
    

  
  

 = 
1 2
1 7

  
     

 
2 0
1 1

  
  
  

(D)
4 2
5 7

  
      

 = 
1 2
3 3

⎡ ⎤
⎢ ⎥− −⎣ ⎦

 
2 0
1 1

  
  
  

Fill in the blanks in each of the Exercises 68–81.

68. _________ matrix is both symmetric and skew symmetric matrix.

69. Sum of two skew symmetric matrices is always _________ matrix.

70. The negative of a matrix is obtained by multiplying it by _________.

71. The product of any matrix by the scalar _________ is the null matrix.

72. A matrix which is not a square matrix is called a _________ matrix.

73. Matrix multiplication is  _________ over addition.

74. If A is a symmetric matrix, then A3 is a _________ matrix.

75. If A is a skew symmetric matrix, then A2 is a _________.
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76. If A and B are square matrices of the same order, then

(i) (AB)′ = _________.

(ii) (kA)′ = _________. (k is any scalar)

(iii) [k (A – B)]′ = _________.

77. If A is skew symmetric, then kA is a _________. (k is any scalar)

78. If A and B are symmetric matrices, then

(i) AB – BA is a _________.

(ii) BA – 2AB is a _________.

79. If A is symmetric matrix, then B′AB is _________.

80. If A and B are symmetric matrices of same order, then AB is symmetric if and
only if _________.

81. In applying one or more row operations while finding A–1 by elementary row
operations, we obtain all zeros in one or more, then A–1 _________.

State Exercises 82 to 101 which of the following statements are True or False

82. A matrix denotes a number.

83. Matrices of any order can be added.

84. Two matrices are equal if they have same number of rows and same number of
columns.

85. Matrices of different order can not be subtracted.

86. Matrix addition is associative as well as commutative.

87. Matrix multiplication is commutative.

88. A square matrix where every element is unity is called an identity matrix.

89. If A and B are two square matrices of the same order, then A + B = B + A.

90. If A and B are two matrices of the same order, then A – B = B – A.

91. If matrix AB = O, then A = O or B = O or both A and B are null matrices.

92. Transpose of a column matrix is a column matrix.

93. If A and B are two square matrices of the same order, then AB = BA.

94. If each of the three matrices of the same order are symmetric, then their sum is
a symmetric matrix.
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95. If A and B are any two matrices of the same order, then (AB)′ = A′B′.

96. If (AB)′ = B′ A′, where A and B are not square matrices, then number of rows
in A is equal to number of columns in B and number of columns in A is equal to
number of rows in B.

97. If A, B and C are square matrices of same order, then AB = AC always implies
that B = C.

98. AA′ is always a symmetric matrix for any matrix A.

99. If A = 
2 3 1
1 4 2

   
  
  

 and B = 

2 3
4 5
2 1

  
  
  
    

, then AB and BA are defined and equal.

100. If A is skew symmetric matrix, then A2 is a symmetric matrix.

101. (AB)–1 = A–1. B–1, where A and B are invertible matrices satisfying commutative
property with respect to multiplication.



4.1 Overview
To every square matrix A = [aij] of order n, we can associate a number (real or complex)
called determinant of the matrix A, written as det A, where aij is the (i, j)th element of A.

If A
a b
c d

  
   

  
, then determinant of A, denoted by |A| (or det A), is given by

|A| 
a b
c d

= = ad – bc.

Remarks
(i) Only square matrices have determinants.

(ii) For a matrix A, A is read as determinant of A and not, as modulus of A.

4.1.1 Determinant of a matrix of order one
Let A = [a] be the matrix of order 1, then determinant of A is defined to be equal to a.

4.1.2 Determinant of a matrix of order two

Let A = [aij] = 
a b
c d
⎡ ⎤
⎢ ⎥
⎣ ⎦

 be a matrix of order 2. Then the determinant of A is defined

as: det (A) = |A| = ad – bc.

4.1.3 Determinant of a matrix of order three
The determinant of a matrix of order three can be determined by expressing it in terms
of second order determinants which is known as expansion of a determinant along a
row (or a column). There are six ways of expanding a determinant of order 3
corresponding to each of three rows (R1, R2 and R3) and three columns (C1, C2 and
C3) and each way gives the same value.

Chapter 4
DETERMINANTS
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Consider the determinant of a square matrix A = [aij]3×3,  i.e.,

11 12 13

21 22 23

31 32 33

A
a a a
a a a
a a a

 

Expanding |A| along C1, we get

|A| = a11 (–1)1+1 
22 23

32 33

a a
a a  + a21 (–1)2+1 

12 13

32 33

a a
a a + a31 (–1)3+1

12 13

22 23

a a
a a

=  a11(a22 a33 –  a23 a32) – a21 (a12 a33 – a13 a32) + a31 (a12 a23 – a13 a22)

Remark  In general, if A = kB, where A and B are square matrices of order n, then
|A| = kn |B|,  n = 1, 2, 3.

4.1.4 Properties of Determinants
For any square matrix A, |A| satisfies the following properties.

(i) |A′| = |A|, where  A′ = transpose of matrix A.

(ii) If we interchange any two rows (or columns), then sign of the determinant
changes.

(iii) If any two rows or any two columns in a determinant are identical (or
proportional), then the value of the determinant is zero.

(iv) Multiplying a determinant by k means multiplying the elements of only one row
(or one column) by k.

(v) If we multiply each element of a row (or a column) of a determinant by constant
k, then value of the determinant is multiplied by k.

(vi) If elements of a row (or a column) in a determinant can be expressed as the
sum of two or more elements, then the given determinant can be expressed as
the sum of two or more determinants.
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(vii) If to each element of a row (or a column) of a determinant the equimultiples of
corresponding elements of other rows (columns) are added, then value of
determinant remains same.

Notes:

(i) If all the elements of a row (or column) are zeros, then the value of the determinant
is zero.

(ii) If value of determinant ‘Δ’ becomes zero by substituting x = α, then x – α is a
factor of ‘Δ’.

(iii) If all the elements of a determinant above or below the main diagonal consists of
zeros, then the value of the determinant is equal to the product of diagonal
elements.

4.1.5 Area of a triangle
Area of a triangle with vertices (x1, y1), (x2, y2) and (x3, y3) is given by

1 1

2 2

3 3

1
1 1
2

1

x y
x y
x y

  .

4.1.6 Minors and co-factors

(i) Minor of an element aij of the determinant of matrix A is the determinant obtained
by deleting ith row and jth column, and it is denoted by Mij.

(ii) Co-factor of an element aij  is given by Aij = (–1)i+j Mij.

(iii) Value of determinant of a matrix A is obtained by the sum of products of elements
of a row (or a column) with corresponding co-factors. For example

|A| = a11 A11 + a12 A12 + a13 A13.

(iv) If elements of a row (or column) are multiplied with co-factors of elements of
any other row (or column), then their sum is zero. For example,

a11 A21 + a12 A22 + a13 A23 = 0.

4.1.7 Adjoint and inverse of a matrix
 (i)       The adjoint of a square matrix A = [aij]n×n is defined as the transpose of the matrix
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[aij]n×n, where Aij is the co-factor of the element aij. It is denoted by adj A.

If 
11 12 13

21 22 23

31 32 33

A ,
a a a
a a a
a a a

  then adj 
11 21 31

12 22 32

13 23 33

A A A
A A A A ,

A A A
  where Aij is co-factor of aij.

(ii) A (adj A) = (adj A) A = |A| I, where A is square matrix of order n.

(iii) A square matrix A is said to be singular or non-singular according as |A| = 0 or
|A| ≠ 0, respectively.

(iv) If A is a square matrix of order n, then |adj A| = |A|n–1.

 (v)      If A and B are non-singular matrices of the same order, then AB and BA are
also nonsingular matrices of the same order.

(vi)      The determinant of the product of matrices is equal to product of their respective
determinants, that is, |AB| = |A| |B|.

(vii)   If AB = BA = I, where A and B are square matrices, then B is called inverse of
A and is written as B = A–1. Also  B–1 =  (A–1)–1 = A.

(viii)    A square matrix A is invertible if and only if A is non-singular matrix.

(ix)    If A is an invertible matrix, then  A–1 = 
1

| A | (adj A)

4.1.8 System of linear equations
(i) Consider the equations: a1x + b1 y + c1 z = d1

a2x + b2 y + c2 z = d2

a3x + b3 y + c3 z = d3,

In matrix form, these equations can be written as A X = B, where

A = 

1 1 1 1

2 2 2 2

3 3 3 3

, X and B
a b c x d
a b c y d
a b c z d

      
              
            

(ii) Unique solution of equation AX = B is given by X = A–1B, where |A| ≠ 0.
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(iii) A system of equations is consistent or inconsistent according as its solution
exists or not.

(iv) For a square matrix A in matrix equation AX = B

(a) If |A| ≠ 0, then there exists unique solution.

(b) If |A| = 0 and (adj A) B ≠ 0, then there exists no solution.

(c) If |A| = 0 and (adj A) B = 0, then system may or may not be consistent.

4.2 Solved Examples

Short Answer (S.A.)

Example 1 If 
2 5 6 5
8 8 3
x

x
  , then find x.

Solution We have 
2 5 6 5
8 8 3
x

x
 . This gives

2x2 – 40 = 18 – 40 ⇒  x2   = 9   ⇒    x  = ± 3.

Example 2 If 

2

2
1

2

1 1 1 1
1 ,

1

x x

y y yz zx xy
x y zz z

Δ= Δ =  , then prove that Δ + Δ1 = 0.

Solution We have 1

1 1 1
yz zx xy
x y z

  

Interchanging rows and columns, we get

1

1
1
1

yz x
zx y
xy z

       

2

2

2

1
x xyz x

y xyz y
xyz

z xyz z

=
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=  

2

2

2

1

1

1

x x
xyz y y
xyz

z z
Interchanging C1 and C2

= 

2

2

2

1

(–1) 1 –

1

x x

y y

z z

  

⇒ Δ1 +  Δ   =  0

Example 3 Without expanding, show that

2 2

2 2

cosec cot 1

cot cosec 1
42 40 2

  

       = 0.

Solution Applying C1 → C1 – C2 – C3, we have

2 2 2

2 2 2

cosec – cot –1 cot 1

cot – cosec 1 cosec 1
0 40 2

   

          =  

2

2

0 cot 1

0 cosec 1 0
0 40 2

θ

θ − =

Example 4  Show that 
x p q
p x q
q q x

   = (x – p) (x2 + px – 2q2)

Solution  Applying C1 → C1 – C2, we have

0

x p p q
p x x q

q x

 
     

1
( ) 1

0

p q
x p x q

q x
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0 2
( ) 1

0

p x q
x p x q

q x

+
= − −    Applying R1 → R1 + R2

Expanding along C1, we have

2 2( ) ( 2 )x p px x q      =  
2 2( ) ( 2 )x p x px q   

Example 5 If  
0

0
0

b a c a
a b c b
a c b c

  
    

  
, then show that  is equal to zero.

Solution Interchanging rows and columns, we get  
0

0
0

a b a c
b a b c
c a c b

  
    

  

Taking ‘–1’ common from R1, R2 and R3, we get

3
0

(–1) 0 –
0

b a c a
a b c b
a c b c

  
      

  

⇒ 2    = 0 or     = 0

Example 6  Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.

Solution    Since A is an invertible matrix, so it is non-singular.

We know that |A| = |A′|. But  |A| ≠ 0. So |A′| ≠ 0    i.e. A′ is invertible matrix.

Now we know that AA–1 = A–1 A = I.

Taking transpose on both sides, we get (A–1)′  A′ = A′ (A–1)′ = (I)′  = I

Hence (A–1)′ is inverse of  A′,  i.e., (A′)–1 = (A–1)′

Long Answer (L.A.)

Example 7 If x = – 4 is a root of 

2 3
1 1
3 2

x
x

x
  = 0, then find the other two roots.
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Solution   Applying R1 → (R1 + R2 + R3), we get

4 4 4
1 1
3 2

x x x
x

x

   

.

Taking (x + 4) common from R1, we get

1 1 1
( 4) 1 1

3 2
x x

x
   

Applying C2 → C2 – C1, C3 → C3 – C1, we get

1 0 0
( 4) 1 1 0

3 1 3
x x

x
    

  
.

Expanding along  R1,

 Δ =  (x + 4) [(x – 1) (x – 3) – 0].  Thus, Δ = 0 implies

x = – 4, 1, 3

Example 8 In a triangle ABC, if

2 2 2

1 1 1
1 sin A 1 sin B 1 sin C 0

sinA +sin A sinB+sin B sinC+sin C

     ,

then prove that ΔABC is an isoceles triangle.

Solution  Let Δ =  
2 2 2

1 1 1
1 sin A 1 sin B 1 sin C

sinA +sin A sinB+sin B sinC+sin C
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            =  
2 2 2

1 1 1
1 sin A 1 sin B 1 sin C

cos A cos B cos C

   

   
  R3 → R3 –  R2

=  
2 2 2 2 2

1 0 0
1 sin A sin B sin A sin C sin B

cos A cos A cos B cos B cos C

   

   
. (C3 → C3 – C2  and C2 → C2 – C1)

Expanding along R1, we get

         Δ = (sinB – sinA) (sin2C – sin2B) – (sinC – sin B) (sin2B – sin2A)

= (sinB – sinA) (sinC – sinB) (sinC – sin A) = 0

⇒ either sinB – sinA = 0  or  sinC – sinB or sinC – sinA = 0

⇒ A = B or B = C or C = A

i.e. triangle ABC is isoceles.

Example 9 Show that if the determinant 
3 2 sin3
7 8 cos2 0
11 14 2

  
     

 
, then sinθ = 0 or 

1
2 .

Solution Applying R2 → R2 + 4R1 and R3 → R3 + 7R1, we get

3 2 sin3
5 0 cos2 4sin3 0

10 0 2+7sin3

  
    

 

or           2 [5 (2 + 7 sin3θ) – 10 (cos2θ + 4sin3θ)] = 0

or 2 + 7sin3θ – 2cos2θ – 8sin3θ = 0

or 2 – 2cos 2θ  – sin 3θ  = 0

sinθ  (4sin2θ  + 4sinθ  – 3) = 0
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or sinθ = 0 or (2sinθ – 1) = 0 or (2sinθ + 3) = 0

or sinθ = 0 or sinθ = 
1
2  (Why ?).

Objective Type Questions

Choose the correct answer from the given four options in each of the Example 10 and 11.

Example 10  Let  

2

2
1

2

A 1 A B C
B 1 and

C 1

x x

y y x y z
zy zx xyz z

    ,  then

(A) Δ1 = – Δ (B) Δ ≠ Δ1

(C) Δ  – Δ1 = 0 (D) None of these

Solution  (C) is the correct answer since 1

A B C
x y z
zy zx xy

    

A
B
C

x yz
y zx
z xy

=

= 

2

2

2

A
1 B

C

x x xyz

y y xyz
xyz

z z xyz
= 

2

2

2

A 1

B 1

Cz 1

x x
xyz y y
xyz

z
  = Δ

Example 11  If x, y ∈ R, then the determinant 
cos sin 1
sin cos 1

cos( ) sin( ) 0

x x
x x

x y x y

 
  

   
 lies

in the interval

(A) 2, 2     (B) [–1, 1]

(C) 2,1     (D) 1, 2,      

Solution The correct choice is A. Indeed applying R3→ R3 – cosyR1 + sinyR2, we get
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cos sin 1
sin cos 1

0 0 sin cos

x x
x x

y y

 
  

 
.

Expanding along R3, we have

Δ = (siny – cosy) (cos2x + sin2x)

    = (siny – cosy) = 
1 12 sin cos
2 2

y y       

    = 2 cos sin sin cos
4 4

y y         
    = 2  sin (y – 

4
π

)

Hence  – 2 ≤ Δ ≤ 2 .

Fill in the blanks in each of the Examples 12 to 14.

Example 12 If A, B, C are the angles of a triangle, then

2

2

2

sin A cotA 1

sin B cotB 1 ................

sin C cotC 1

   

Solution Answer is 0. Apply R2 → R2 – R1, R3 → R3 – R1.

Example 13 The determinant 

23 3 5 5

15 46 5 10

3 115 15 5

+

Δ= +

+

 is equal to ...............

Solution Answer is 0.Taking 5  common from C2 and C3 and applying

C1→  C3 – 3  C2, we get the desired  result.

Example 14  The value of the determinant
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2 2

2 2 2

2 2

sin 23 sin 67 cos180

sin 67 sin 23 cos 180 ..........

cos180 sin 23 sin 67

   

        

   

Solution Δ = 0. Apply C1 → C1 + C2 + C3.

State whether the statements in the Examples 15 to 18 is True or False.

Example 15  The determinant

cos( ) sin ( ) cos2
sin cos sin
cos sin cos

x y x y y
x x y
x x y

   
  

 

is independent of x only.

Solution  True. Apply R1 →  R1 + sinyR2 + cosy R3, and expand

Example 16 The value of

2 4
1 1 1

2 4
2 2 2

1 1 1

C C C

C C C

n n n

n n n

+ +

+ +
 is 8.

Solution  True

Example 17 If 
5 2

A 2 3
1 1

x
y

z

  
     
    

, xyz  = 80, 3x + 2y + 10z = 20, then

A adj.
81 0 0

A 0 81 0
0 0 81

  
     
    

 .

Solution : False.
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Example 18  If –1

1 54
2 20 1 3
1 3A 1 2 , A 3
2 2

2 3 1 1 1
2 2

x

y

     
    
            
      

  
    

then x = 1, y = – 1.

Solution  True

4.3 EXERCISE

Short  Answer (S.A.)

Using the properties of determinants in Exercises 1 to 6, evaluate:

1.
2 1 1

1 1
x x x

x x
   
  2.

a x y z
x a y z
x y a z

 
 

 

3.

2 2

2 2

2 2

0

0

0

xy xz

x y yz

x z zy
4.

3
3

3

x x y x z
x y y z y
x z y z z

    
  
  

5.

4
4

4

x x x
x x x
x x x

 
 

 
6.    

2 2
2 2
2 2

a b c a a
b b c a b
c c c a b

  
  

  

Using the proprties of determinants in Exercises 7 to 9, prove that:

7.

2 2

2 2

2 2

0

y z yz y z

z x zx z x

x y xy x y

 

  

 
8.  4

y z z y
z z x x xyz
y x x y
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9.

2

3
2 2 1 1

2 1 2 1 ( 1)
3 3 1

a a a
a a a
  
    

10. If A + B + C = 0, then prove that  

1 cosC cosB
cosC 1 cosA 0
cosB cos A 1

 

11. If the co-ordinates of the vertices of an equilateral triangle with sides of length

‘a’ are (x1, y1), (x2, y2), (x3, y3), then 

2
1 1 4

2 2

3 3

1
31

4
1

x y
ax y

x y
= .

12. Find the value of θ satisfying  
1 1 sin3
4 3 cos2 0

7 7 2

θ⎡ ⎤
⎢ ⎥− θ =⎢ ⎥
⎢ ⎥− −⎣ ⎦

.

13. If 
4 4 4
4 4 4 0
4 4 4

x x x
x x x
x x x

     
        
       

, then find values of x.

14. If a1, a2, a3, ..., ar are in G.P., then prove that the determinant

1 5 9

7 11 15

11 17 21

r r r

r r r

r r r

a a a
a a a
a a a

   

   

   

 is independent of r.

15. Show that the points (a + 5, a – 4), (a – 2, a + 3) and (a, a) do not lie on a
straight line for any value of a.

16. Show that the ΔABC is an isosceles triangle if the determinant
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2 2 2

1 1 1
1 cosA 1 cosB 1 cosC 0

cos A cosA cos B cosB cos C cosC

⎡ ⎤
⎢ ⎥

Δ= + + + =⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

.

17. Find A–1 if 
0 1 1

A 1 0 1
1 1 0

  
     
    

 and show that 
2

–1 A 3IA
2
  .

Long Answer  (L.A.)

18. If 
1 2 0

A 2 1 2
0 1 1

⎡ ⎤
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥−⎣ ⎦

, find A–1.

Using A–1, solve the system of linear equations
 x – 2y = 10 , 2x –  y – z = 8 , –2y + z = 7.

19. Using matrix method, solve the system of equations
3x + 2y – 2z = 3,  x + 2y + 3z = 6, 2x – y + z = 2 .

20. Given 
2 2 4 1 1 0

A 4 2 4 , B 2 3 4
2 1 5 0 1 2

      
            
         

, find BA and use this to solve the

system of equations y + 2z = 7, x – y = 3,  2x + 3y + 4z = 17.

21. If a + b + c ≠ 0 and 0
a b c
b c a
c a b

= , then prove that a = b = c.

22. Prove that 

2 2 2

2 2 2

2 2 2

bc a ca b ab c

ca b ab c bc a

ab c bc a ca b

   

   

   
is divisible by a + b + c and find the

quotient.
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23. If x + y + z = 0, prove that 

xa yb zc a b c
yc za xb xyz c a b
zb xc ya b c a

=

Objective Type Questions (M.C.Q.)

Choose the correct answer from given four options in each of the  Exercises from 24 to 37.

24. If 
2 5 6 2
8 7 3
x

x
 

 , then value of x is

(A) 3 (B) ± 3

(C) ± 6 (D) 6

25. The value of determinant 

a b b c a
b a c a b
c a a b c

− +
− +
− +

(A) a3 + b3 + c3 (B) 3 bc

(C) a3 + b3 + c3 – 3abc (D) none of these

26. The area of a triangle with vertices (–3, 0), (3, 0) and (0, k) is 9 sq. units. The
value of k will be

(A) 9 (B) 3

(C) – 9 (D) 6

27. The determinant 

2

2 2

2

b ab b c bc ac

ab a a b b ab

bc ac c a ab a

   

   

   
 equals

(A) abc (b–c) (c – a) (a – b) (B) (b–c) (c – a) (a – b)

(C) (a + b + c) (b – c) (c – a) (a – b) (D) None of these
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28. The number of distinct real roots of 
sin cos cos
cos sin cos 0
cos cos sin

x x x
x x x
x x x

  in the interval

4 4
xπ π

− ≤ ≤  is

(A) 0 (B) 2

(C) 1 (D) 3

29. If A, B and C are angles of a triangle, then the determinant

1 cosC cosB
cosC 1 cosA
cosB cos A 1

 
 

 
 is equal to

(A) 0 (B) – 1

(C) 1 (D) None of these

30. Let f (t) = 
cos 1
2sin 2
sin

t t
t t t

t t t
, then 20

( )lim
t

f t
t 

 is equal to

(A) 0 (B) – 1

(C) 2 (D) 3

31. The maximum value of 
1 1 1
1 1 sin 1

1 cos 1 1
    

  
 is (θ  is real number)

(A)
1
2 (B)

3
2

(C) 2 (D)
2 3

4
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32. If  f  (x) = 
0

0
0

x a x b
x a x c
x b x c

  
  
  

 , then

(A) f (a) = 0 (B) f (b) = 0

(C) f (0) = 0 (D) f (1) = 0

33. If  A  = 
2 3
0 2 5
1 1 3

    
  
  
    

 , then A–1 exists if

(A) λ = 2 (B) λ ≠  2

(C) λ ≠ – 2 (D) None of these

34. If  A and B are invertible matrices, then which of the following is not correct?

(A) adj A = |A|. A–1 (B) det(A)–1 = [det (A)]–1

(C) (AB)–1 = B–1 A–1 (D) (A + B)–1 = B–1 + A–1

35. If  x, y, z are all different from zero and 
1 1 1

1 1 1 0
1 1 1

x
y

z

 
  

 
, then value of

x–1 + y–1 + z–1 is

(A) x y z (B) x–1 y–1 z–1

(C) – x  – y  – z (D) –1

36. The value of the determinant 
2

2
2

x x y x y
x y x x y
x y x y x

  
  
  

 is

(A) 9x2 (x + y) (B) 9y2 (x + y)

(C) 3y2 (x + y) (D) 7x2 (x + y)



DETERMINANTS    83

37.      There are two values of a which makes determinant, Δ =
1 –2 5
2 1
0 4 2

a
a

 = 86, then

sum of these number is

(A) 4 (B) 5

(C) – 4 (D) 9

Fill in the blanks
38. If A is a matrix of order 3 × 3, then |3A| = _______ .
39. If A is invertible matrix of order 3 × 3, then |A–1 |  _______ .

40. If x, y, z ∈ R, then the value of determinant 

    
    
    

2 2– –

2 2– –

2 2– –

2 2 2 2 1

3 3 3 3 1

4 4 4 4 1

x x x x

x x x x

x x x x

  

  

  

 is

equal to  _______.

41. If cos2θ = 0, then 

20 cos sin
cos sin 0 _________.
sin 0 cos

θ θ
θ θ =
θ θ

42. If A is a matrix of order 3 × 3, then (A2)–1  = ________.
43. If A is a matrix of order 3 × 3, then number of minors in determinant of A are

________.
44. The sum of the products of elements of any row with the co-factors of

corresponding elements is equal to _________.

45. If x = – 9 is a root of  
3 7

2 2
7 6

x
x

x
 = 0, then other two roots are __________.

46.
0

0
0

xyz x z
y x y z
z x z y

−
− −
− −

  = __________.
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47. If  f (x)  =  

17 19 23

23 29 34

41 43 47

(1 ) (1 ) (1 )

(1 ) (1 ) (1 )

(1 ) (1 ) (1 )

x x x

x x x

x x x

+ + +

+ + +

+ + +

 = A + Bx + Cx2 + ..., then

A =  ________.
State True or False for the statements of the following Exercises:

48.   –13A  =   31A  , where A is a square matrix and |A| ≠ 0.

49. (aA)–1 = 
–11 A

a , where a  is any real number and A is a square matrix.

50. |A–1| ≠ |A|–1 , where A is non-singular matrix.

51. If A and B are matrices of order 3 and |A| = 5, |B| = 3, then
|3AB|  = 27 × 5 × 3 = 405.

52. If the value of a third order determinant is 12, then the value of the determinant
formed by replacing each element by its co-factor will be 144.

53.
1 2
2 3 0
3 4

x x x a
x x x b
x x x c

+ + +
+ + + =
+ + +

, where a, b, c are in A.P.

54. |adj. A| = |A|2 , where A is a square matrix of order two.

55. The determinant 
sin A cos A sin A +cosB
sin B cos A sin B+cosB
sin C cos A sin C+cosB

is equal to zero.

56. If the determinant 
+

x a p u l f
y b q v m g
z c r w n h

   
   
  

 splits into exactly K determinants of

order 3, each element of which contains only one term, then the value of K is 8.
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57. Let 16
a p x
b q y
c r z

   ,  then 1 32
p x a x a p
q y b y b q
r z c z c r

+ + +
Δ = + + + =

+ + +
.

58. The maximum value of  
1 1 1

11 (1 sin ) 1 is
2

1 1 1 cos
  

  
.



5.1 Overview

5.1.1 Continuity of a function at a point

Let f  be a real function on a subset of the real numbers and let c be a point in the
domain of  f. Then f is continuous at c if

lim ( ) ( )
x c

f x f c
→

=

More elaborately, if the left hand limit, right hand limit and the value of the function
at x = c exist and are equal to each other, i.e.,

lim ( ) ( ) lim ( )
x c x c

f x f c f x
    

  

then f is said to be continuous at x = c.

5.1.2 Continuity in an interval

(i) f is said to be continuous in an open interval (a, b) if it is continuous at every
point in this interval.

(ii) f is said to be continuous in the closed interval [a, b] if

 f  is continuous in (a, b)

lim
x a+→

  f (x) = f (a)

–
lim
x b→

  f (x) = f (b)

Chapter 5

CONTINUITY AND
DIFFERENTIABILITY
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5.1.3 Geometrical meaning of continuity

(i) Function f  will be continuous at x = c if there is no break in the graph of the

function at the point   ( ), ( )c f c .

(ii) In an interval, function is said to be continuous if there is no break in the
graph of the function in the entire interval.

5.1.4 Discontinuity

The function f will be discontinuous at x = a in any of the following cases :

(i) lim
x a−→

  f (x) and lim
x a+→

  f (x)  exist but are not equal.

(ii) lim
x a−→

  f (x)  and lim
x a+→

  f (x)  exist and are equal but not equal to  f (a).

(iii)  f (a) is not defined.

5.1.5 Continuity of some of the common functions
Function  f (x) Interval in which

f  is continuous
1.  The constant function, i.e.  f (x)  = c

2.  The identity function, i.e.  f (x)  = x R

3.  The polynomial  function, i.e.

f (x)= a0 xn + a1 x n–1 + ... + an–1 x + an

4. | x – a | (–∞ ,∞ )

5. x–n, n is a positive integer (–∞ ,∞ ) – {0}

6. p (x) / q (x), where p (x) and q (x) are R – { x : q (x) = 0}

polynomials in x

7. sin x, cos x R

8. tan x, sec x R– { (2 n + 1) 
π
2

: n ∈ Z}

9. cot x, cosec x R– { (nπ : n ∈ Z}
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10. ex R

11. log x (0, ∞ )

12. The inverse trigonometric functions, In their respective
i.e., sin–1 x, cos–1 x etc. domains

5.1.6 Continuity of composite functions

Let f and g be real valued functions such that (fog) is defined at a. If g is continuous
at a and f is continuous at g (a), then (fog) is continuous at a.

5.1.7 Differentiability

The function defined by f ′ (x) = 
0

( ) ( )lim
h

f x h f x
h→

+ −
, wherever the limit exists, is

defined to be the derivative of f at x. In other words, we say that a function f is

differentiable at a point c in its domain if both 
0

( ) ( )lim
h

f c h f c
h−→

+ −
, called left hand

derivative, denoted by Lf ′ (c), and 
0

( ) ( )lim
h

f c h f c
h+→

+ −
, called right hand derivative,

denoted by R f ′ (c), are finite and equal.

(i) The function y = f (x) is said to be differentiable in an open interval (a, b) if
it is differentiable at every point of (a, b)

(ii) The function   y = f (x) is said to be differentiable in the closed interval [a, b]
if  R f ′ (a) and L f ′ (b) exist and f ′ (x) exists for every point of (a, b).

(iii) Every differentiable function is continuous, but the converse is not true

5.1.8 Algebra of derivatives
If u, v are functions of x, then

(i)
( )d u v
d x
±

 = ±
du dv
dx dx (ii) ( ) = +

d dv duu v u v
dx dx dx

(iii)
2

du dvv ud u dx dx
dx v v

−⎛ ⎞ =⎜ ⎟
⎝ ⎠
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5.1.9   Chain rule is a rule to differentiate composition of functions. Let f = vou. If

t = u (x) and both 
dt
dx  and 

dv
dt  exist then .=

df dv dt
dx dt dx

5.1.10  Following are some of the standard derivatives (in appropriate domains)

1.
–1

2

1(sin )
1

=
−

d x
dx x

2.
–1

2

1(cos )
1

d x
dx x

−
=

−

3. –1
2

1(tan )
1

=
+

d x
dx x 4. –1

2

1(cot )
1

d x
dx x

−
=

+

5.
–1

2

1(sec ) , 1
1

d x x
dx x x

= >
−

6.
–1

2

1(cosec ) , 1
1

d x x
dx x x

−
= >

−

5.1.11 Exponential and logarithmic functions

(i) The exponential function with positive base b > 1 is the function
y = f (x) = bx. Its domain is R, the set of all real numbers and range is the set
of all positive real numbers. Exponential function with base 10 is called the
common exponential function and with base e is called the natural exponential
function.

(ii) Let b > 1 be a real number. Then we say logarithm of a to base b is x if bx=a,
Logarithm of a to the base b is denoted by logb a. If  the base b = 10, we say
it is common logarithm and if b = e, then we say it is natural logarithms. logx
denotes the logarithm function to base e. The domain of logarithm function
is R+, the set of all positive real numbers and the range is the set of all real
numbers.

(iii) The properties of logarithmic  function to any base b > 1 are listed below:

1. logb (xy) = logb x + logb y

2. logb 
⎛ ⎞
⎜ ⎟
⎝ ⎠

x
y  = logb x – logb y
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3.  logb x
n = n logb x

4.  
loglog
log

c
b

c

xx
b

=  , where c > 1

5.  logb x 
1

log
=

x b

6.  logb b = 1 and logb 1 = 0

(iv) The derivative of ex  w.r.t., x is ex  , i.e. ( )x xd e e
dx

 . The derivative of logx

w.r.t., x is 
1
x ; i.e. 

1(log )d x
dx x

 .

5.1.12 Logarithmic differentiation is a powerful technique to differentiate functions
of the form f (x) = (u (x))v(x), where both f and u need to be positive functions
for this technique to make sense.

5.1.13 Differentiation of a function with respect to another function

Let u = f (x) and v = g (x) be two functions of x, then to find derivative of   f (x)  w.r.t.

to g (x), i.e., to find 
du
dv , we use the formula

du
du dx

dvdv
dx

= .

5.1.14 Second order derivative

2

2
d dy d y
dx dx dx

       is called the second order derivative of y w.r.t. x. It is denoted by y′′ or

y2 , if y = f (x).

5.1.15 Rolle’s Theorem

Let f : [a, b]    R be continuous on [a, b] and differentiable on (a, b), such that f (a)
= f (b), where a and b are some real numbers. Then there exists at least one point c in
(a, b) such that f ′ (c) = 0.
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Geometrically Rolle’s theorem ensures that there is at least one point on the curve
y = f (x) at which tangent is parallel to x-axis (abscissa of the point lying in (a, b)).

5.1.16 Mean Value Theorem (Lagrange)

Let f : [a, b]   R be a continuous function on [a, b] and differentiable on (a, b). Then

there exists at least one point c in (a, b) such that f ′ (c) = 
( ) ( )f b f a

b a
 
 .

Geometrically, Mean Value Theorem states that there exists at least one point c in
(a, b) such that the tangent at the point (c, f (c)) is parallel to the secant joining the
points (a, f (a) and (b, f (b)).

5.2  Solved Examples

Short Answer (S.A.)

Example 1 Find the value of the constant k so that the function f  defined below is

continuous at x = 0, where 2

1 – cos 4( ) , 0
8

, 0

xf x x
x

k x

⎧
⎪⎪= ≠⎨
⎪
⎪ =⎩

.

Solution  It is given that the function f is continuous at x = 0. Therefore, 0
lim
x→  f (x) = f (0)

⇒ 20

1– cos4lim
8x

x k
x→

=

⇒
2

20

2sin 2lim
8x

x k
x→

=

⇒
2

0

sin 2lim
2x

x k
x→

⎛ ⎞ =⎜ ⎟
⎝ ⎠

⇒ k = 1

Thus, f is continuous at x = 0 if k = 1.

Example 2 Discuss the continuity of the function f(x) = sin x . cos x.

Solution Since sin x and cos x are continuous functions and product of two continuous
function is a continuous function, therefore f(x) = sin x . cos x is a continuous function.
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Example 3 If 

3 2

2

–16 20 , 2
( ) ( – 2)

, 2

x x x x
f x x

k x

⎧ + +
≠⎪= ⎨

⎪ =⎩

 is continuous at x = 2, find

the value of k.
Solution Given f (2) = k.

Now, 
–

3 2

222 2

–16 20lim ( ) lim ( ) lim
( – 2)xx x

x x xf x f x
x+ →→ →

+ +
= =

= 
2

22 2

( 5)( – 2)lim lim( 5) 7
( – 2)x x

x x x
x  

    

As f is continuous at x = 2, we have

 2
lim ( ) (2)
x

f x f
→

=

⇒ k = 7.
Example 4 Show that the function f defined by

1sin , 0
( )

0, 0

x x
f x x

x

⎧ ≠⎪= ⎨
⎪ =⎩

is continuous at x = 0.
Solution  Left hand limit at x = 0 is given by

 – –0 0

1lim ( ) lim sin
x x

f x x
x→ →

=  =  0 [since, –1 < sin
1
x  < 1]

Similarly 
0 0

1lim ( ) lim sin 0
x x

f x x
x    

  . Moreover f (0) = 0.

Thus –0 0
lim ( ) lim ( ) (0)
x x

f x f x f
   

  . Hence f is continuous at x = 0

Example 5 Given  f(x) = 
1
–1x . Find the points of discontinuity of the composite

function y = f [f(x)].

Solution We know that  f (x) = 
1
–1x  is discontinuous at x = 1

Now, for 1x  ,
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f (f (x)) = 
1
–1

f
x

  
     = 

1 –1
1 2 ––1
–1

x
x

x

 
,

which is discontinuous at x = 2.
Hence, the points of discontinuity are x = 1 and x = 2.

Example 6 Let f(x) = x x , for all x ∈ R. Discuss the derivability of f(x) at x = 0

Solution We may rewrite f as 
2

2

, if 0
( )

,if 0

x x
f x

x x

⎧ ≥⎪= ⎨
− <⎪⎩

Now Lf ′ (0) = 
– –

2

0 0 0

(0 ) – (0) – – 0lim lim lim 0
h h h

f h f h h
h h −→ → →

+
= = − =

Now Rf ′ (0) = 
2

0 0 0

(0 ) – (0) – 0lim lim lim 0
h h h

f h f h h
h h+ + −→ → →

+
= = =

Since the left hand derivative and right hand derivative both are equal, hence f is
differentiable at x = 0.

Example 7 Differentiate tan x  w.r.t. x

Solution  Let y = tan x . Using chain rule, we have

1 . (tan )
2 tan

dy d x
dx dxx

 

= 
21 .sec ( )

2 tan

dx x
dxx

= 
21 1(sec )

22 tan
x

xx

  
    

= 
2(sec )

4 tan

x

x x
.

Example 8 If y = tan(x + y), find 
dy
dx .

Solution Given y = tan (x + y). differentiating both sides w.r.t. x, we have



94    MATHEMATICS

2sec ( ) ( )dy dx y x y
dx dx

   

= sec2 (x + y) 1 dy
dx

       

or [1 – sec2 (x + y] 
dy
dx = sec2 (x + y)

Therefore,
2

2
sec ( )

1 sec ( )
dy x y
dx x y

  
   = – cosec2 (x + y).

Example 9 If ex + ey = ex+y, prove that

y xdy e
dx

−=− .

Solution Given that ex + ey = ex+y. Differentiating both sides w.r.t. x, we have

ex + ey dy
dx

 = ex+y 1 dy
dx

       

or  (ey – ex+y)
dy
dx

 =  ex+y – ex,

which implies that 
– –

x y x x y x
y x

y x y y x y
dy e e e e e e
dx e e e e e

 
 

 
     

   .

Example 10  Find 
dy
dx , if y = tan–1 

3

2
3 1 1,
1 3 3 3

x x x
x

⎛ ⎞−
− < <⎜ ⎟

−⎝ ⎠
.

Solution Put x = tan  , where 
6 6
−π π

< θ < .

Therefore, y = tan–1 
3

2
3tan tan

1 3tan
⎛ ⎞θ− θ
⎜ ⎟

− θ⎝ ⎠
= tan–1 (tan3  )

= 3  (because 3
2 2

      )

= 3tan–1x
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Hence,     
dy
dx = 2

3
1 x .

Example 11 If y = sin–1   21 1x x x x   and 0 < x < 1, then  find 
dy
dx .

Solution We have y = sin–1   21 1x x x x   , where 0 < x < 1.

Put x = sinA and x  = sinB

Therefore,  y = sin–1   2 2sin A 1 sin B sin B 1 sin A   

 = sin–1   sin AcosB sin Bcos A 

= sin–1   sin(A B) = A – B

Thus y = sin–1 x –  sin–1 x
Differentiating w.r.t. x, we get

  
  2 2

1 1 .
1 1

dy d x
dx dxx x

  
  

= 2

1 1
2 11 x xx

 
  .

Example 12 If x = a sec3   and y = a tan3  , find 
dy
dx  at 3

   .

Solution We have  x = a sec3   and y = a tan3  .
Differentiating w.r.t.  , we get

2 33 sec (sec ) 3 sec tandx da a
d d

      
  

and 2 2 23 tan (tan ) 3 tan secdy da a
d d

= θ θ = θ θ
θ θ

.

Thus

2 2

3
3 tan sec tan sin

sec3 sec tan

dy
dy ad

dxdx a
d

         
   

 
.
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Hence,
3

3sin
3 2at

dy
dx    

         .

Example 13  If xy = ex–y, prove that 
dy
dx  = 2

log
(1 log )

x
x .

Solution We have xy = ex–y . Taking logarithm on both sides, we get
y log x = x – y

⇒ y (1 + log x) = x

i.e. y = 1 log
x

x 
Differentiating both sides w.r.t. x, we get

2 2

1(1 log ).1
log

(1 log ) (1 log )

x x
dy xx
dx x x

        
  

  
.

Example 14  If y = tanx + secx, prove that 
2

2
d y
dx

 = 2
cos

(1 sin )
x
x .

Solution We have y = tanx + secx.  Differentiating w.r.t. x, we get

dy
dx  = sec2x + secx tanx

= 2 2
1 sin

cos cos
x

x x
   =  2

1 sin
cos

x
x

 
= 

1 sin
(1 sin )(1 sin )

x
x x
+

+ − .

thus 
dy
dx  = 

1
1–sin x .

Now, differentiating again w.r.t. x, we get

2

2
d y
dx

 =
  

2 2

– – cos cos
(1– sin ) (1– sin )

x x
x x

 

Example 15 If f (x) = |cos x|, find f ′
3
4
   

    .
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Solution When 2
 

< x < π, cosx < 0 so that |cos x| = – cos x, i.e., f (x) = – cos x

   f ′ (x) = sin x.

Hence,   f ′
3
4
   

    = sin 3
4
   

    
 = 

1
2

Example 16 If f (x) = |cos x – sinx|, find f ′ 6
   

    .

Solution When 0 < x < 
4
π

, cos x > sin x, so that cos x – sin x > 0, i.e.,

 f  (x) = cos x – sin x
   f ′ (x) = – sin x – cos x

Hence  f ′ 6
   

    = – sin 6
 

 – cos 6
 

 =  
1 (1 3)
2

− + .

Example 17 Verify Rolle’s theorem for the function,  f (x) = sin 2x in 0,
2
   

    
.

Solution Consider f (x) = sin 2x in 0,
2
   

    
. Note that:

(i) The function  f  is continuous in  0,
2
   

    
, as  f  is a sine function, which is

always continuous.

(ii) f ′ (x) = 2cos 2x, exists in 0,
2
   

    , hence  f   is derivable in 0,
2
π⎛ ⎞

⎜ ⎟
⎝ ⎠

.

(iii) f (0) = sin0 = 0 and f  2
   

     = sinπ = 0 ⇒ f (0) =  f  2
   

    .

Conditions of Rolle’s theorem are satisfied. Hence there exists at least one c ∈ 0,
2
   

    
such that f ′(c) = 0. Thus

2 cos 2c = 0 ⇒    2c = 2
 

⇒    c = 4
 

.
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Example 18 Verify mean value theorem for the function f (x) = (x – 3) (x – 6) (x – 9)
in [3, 5].
Solution (i) Function f  is continuous in [3, 5] as product of polynomial functions is a
polynomial, which is continuous.
(ii)   f ′(x) = 3x2 – 36x + 99 exists in (3, 5) and hence derivable in (3, 5).
Thus conditions of mean value theorem are satisfied. Hence, there exists at least one
c ∈ (3, 5) such that

(5) (3)( )
5 3

f ff c    
 

⇒ 3c2 – 36c + 99 = 
8 0

2
 

 = 4

⇒ c =  
136
3

 .

Hence 
136
3

c    (since other value is not permissible).

Long  Answer (L.A.)

Example 19 If f (x) = 
2 cos 1,
cot 1 4

x x
x

   
 

find the value of f 4
   

     so that f (x) becomes continuous at x = 4
 

.

Solution Given, f (x) = 
2 cos 1,
cot 1 4

x x
x

   
 

Therefore,
4 4

2 cos 1lim ( ) lim
cot 1x x

xf x
x    

  
 

= 
( )

4

2 cos 1 sin
lim

cos sinx

x x

x xπ
→

−

−

= 
  
  

  
  

  
  

4

2 cos 1 2 cos 1 cos sin
lim . . .sin

cos sin cos sin2 cos 1x

x x x x
x

x x x xx  
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= ( )
2

2 2

4

2cos 1 cos sinlim . . sin
cos sin 2 cos 1x

x x x x
x x xπ

→

− +
− +

= ( )
4

cos 2 cos sinlim . . sin
cos 2 2 cos 1x

x x x x
x xπ

→

⎛ ⎞+
⎜ ⎟⎜ ⎟+⎝ ⎠

= 
  

4

cos sin
lim sin

2 cos 1x

x x
x

x  

 
 

= 

1 1 1
12 2 2

1 22. 1
2

       
 

 

Thus,
4

1lim ( )
2x

f x
  

 

If we define 
1

4 2
f π⎛ ⎞=⎜ ⎟
⎝ ⎠

, then f (x) will become continuous at 
4

x π
= . Hence for f to be

continuous at 4
x   , 

1
4 2

f         .

Example 20 Show that the function f given by  

1

1
1, 0

( )
1

0, 0

x

x

e if x
f x

e
if x

 
      
  

   

 is discontinuous at x = 0.

Solution The left hand limit of f  at x = 0 is given by

1

10 0

1 0 1lim ( ) lim 1
0 1

1

x

x x
x

ef x
e

    

  
    

 
 

.
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Similarly,              

1

10 0

1lim ( ) lim
1

x

x x
x

ef x
e

    

  
 

=  

1

0
1

11

lim 11

x

x

x

e

e

  

 

   = 

1

10

1 1 0lim 1
1 0

1

x

x
x

e

e
 

 

  

    
 

 

Thus 
0 00

lim ( ) lim ( ), therefore, lim ( )
x xx

f x f x f x
− +→ →→

≠  does not exist. Hence f  is discontinuous

at x = 0.

Example 21 Let 

2
1 cos4 , 0

, 0( )

, 0
16 4

x if x
x

a if xf x
x if x
x

    
     
 

  
    

For what value of a, f is continuous at x = 0?

Solution Here f (0) = a  Left hand limit of f at 0 is

20 0

1 cos4lim ( ) lim
x x

xf x
x    

   
2

20

2sin 2lim
x

x
x  

 

2

2 0

sin 2lim 8
2x

x
x  

       = 8 (1)2 = 8.

and right hand limit of f at 0 is

0 0
lim ( ) lim

16 4x x

xf x
x

    
 

  

        = 0

( 16 4)
lim

( 16 4)( 16 4)x

x x

x x
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        =   0 0

( 16 4)
lim lim 16 4 8

16 16x x

x x
x

x    

  
    

  

Thus, 
0 0

lim ( ) lim ( ) 8
x x

f x f x
    

  . Hence  f is continuous at x = 0 only if a = 8.

Example 22 Examine the differentiability of the function f defined by

2 3, if 3 2
( ) 1 , if 2 0

2 , if 0 1

x x
f x x x

x x

      
       
     

Solution The only doubtful points for differentiability of f (x) are x = – 2 and x = 0.
Differentiability at x = – 2.

Now L f  ′ (–2) = 
0

(–2 ) (–2)lim
h

f h f
h  

  

= 
0 0 0

2(–2 ) 3 (–2 1) 2lim lim lim 2 2
h h h

h h
h h      

       .

and  R f  ′ (–2) = 
0

(–2 ) (–2)lim
h

f h f
h  

  

= 
0

–2 1 ( 2 1)lim
h

h
h  

     

= 
0 0

1 (–1)lim lim 1
h h

h h
h h    

    

Thus R f  ′ (–2) ≠ L f  ′ (–2). Therefore f is not differentiable at x = – 2.
Similarly, for differentiability at x = 0, we have

L (f ′(0)=  
0

(0 ) (0)lim
h

f h f
h  

  

=  
0

0 1 (0 2)lim
h

h
h  

    

=  
0 0

1 1lim lim 1
h h

h
h h    

         
which does not exist. Hence  f is not differentiable at x = 0.
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Example 23 Differentiate tan-1 
21 x

x

   
  
  

with respect to cos-1   22 1x x , where

1 ,1
2

x        .

Solution Let u = tan-1 
21 x

x

   
  
  

and v = cos-1   22 1x x .

We want to find 

du
du dx

dvdv
dx

 

Now u = tan-1 
21 x

x

   
  
  

.  Put x = sinθ. 4 2
π π⎛ ⎞<θ<⎜ ⎟

⎝ ⎠
.

Then  u = tan-1 

21 sin
sin

    
     

  = tan-1 (cot θ)

= tan-1 tan
2 2

⎧ ⎫π π⎛ ⎞− θ = − θ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 –1sin
2

x   

Hence 2

1

1

du
dx x

  
 .

Now v = cos–1 (2x 21 x )

  = 2
 

– sin–1 (2x 21 x )

= 2
 

– sin–1 (2sinθ 2 –11 sin ) sin (sin 2 )
2
π

− θ = − θ

 = 2
 

– sin–1 {sin (π – 2θ)}   [since 
2
π

 < 2 θ < π]
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= ( 2 ) 2
2 2
          

⇒ v = 2
  

+ 2sin–1x

⇒ 2

2

1

dv
dx x

 
 .

Hence

2

2

1
11

2 2
1

du
du xdx

dvdv
dx x

−
−−= = =

−

.

Objective Type Questions
Choose the correct answer from the given four options in each of the Examples 24 to 35.

Example 24  The function f (x) = 

sin cos ,if 0

, if 0

x x x
x

k x

    
 
   

is continuous at x = 0, then the value of k is
(A) 3 (B)  2
(C) 1 (D) 1.5

Solution   (B) is the Correct answer.
Example 25 The function f (x) = [x], where [x] denotes the greatest integer function,
is continuous at

(A) 4 (B) – 2
(C) 1 (D) 1.5

Solution  (D) is the correct answer. The greatest integer function[x] is discontinuous
at all integral values of x. Thus D is the correct answer.

Example 26 The number of points at which the function f (x) = 
1

–[ ]x x   is not

continuous is
(A) 1 (B) 2
(C) 3 (D) none of these
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Solution (D) is the correct answer.  As x – [x] = 0, when x is an integer so f (x) is
discontinuous for all x ∈ Z.
Example 27 The function given by f (x) = tanx is discontinuous on the set

(A)   :n n  Z (B)   2 :n n  Z

(C) (2 1) :
2

n n       
  

Z (D) :
2

n n      
  

Z

Solution C is the correct answer.
Example 28 Let f (x)= |cosx|. Then,

(A) f  is everywhere differentiable.

(B) f  is everywhere continuous but not differentiable at n = nπ, n  Z .

(C) f  is everywhere continuous but not differentiable at x = (2n + 1)
2
π

,

n∈Z .
(D) none of these.

Solution  C is the correct answer.
Example 29 The function f (x) = |x| + |x – 1| is

(A) continuous at x = 0 as well as at x = 1.
(B) continuous at x = 1 but not  at x = 0.
(C) discontinuous at x = 0 as well as at x = 1.
(D) continuous at x = 0 but not at x = 1.

Solution  Correct answer is A.
Example 30 The value of k which makes the function defined by

1sin , if 0
( )

, if 0

x
f x x

k x

     
   

 , continuous at x = 0 is

(A) 8 (B) 1
(C) –1 (D) none of these

Solution (D) is the correct answer. Indeed
0

1lim sin
x x→

does not exist.

Example 31 The set of points where the functions f  given by f (x) = |x – 3| cosx is
differentiable is
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(A) R (B) R – {3}
(C) (0, ∞) (D) none of these

Solution  B is the correct answer.
Example 32 Differential coefficient of sec (tan–1x) w.r.t. x is

(A) 21

x

x+ (B) 21
x
x+

(C) 21x x+ (D) 2

1

1 x+
Solution (A) is the correct answer.

Example 33  If u = 
–1

2
2sin

1
x
x

⎛ ⎞
⎜ ⎟
+⎝ ⎠

and v = 
–1

2
2tan

1
x
x

⎛ ⎞
⎜ ⎟
−⎝ ⎠

, then 
du
dv is

(A)
1
2

(B) x (C)
2

2
1–
1

x
x+ (D) 1

Solution  (D) is the correct answer.
Example 34 The value of c in Rolle’s Theorem for the function f (x) = ex sinx,

[0, ]x∈ π is

(A)
6
π

(B)
4
π

(C)
2
π

(D)
3
4
π

Solution  (D) is the correct answer.
Example 35 The value of c in Mean value theorem for the function f (x) = x (x – 2),
x ∈ [1, 2] is

(A)
3
2

(B)
2
3

(C)
1
2

(D)
3
2

Solution  (A) is the correct answer.
Example 36 Match the following

COLUMN-I COLUMN-II

(A) If a function  

sin 3 , 0
( )

, if 0
2

x if x
xf x
k x

      
    

(a) |x|

is continuous at x = 0, then k is equal to
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(B) Every continuous function is differentiable (b) True
(C) An example of a function which is continuous (c) 6

everywhere but not differentiable at exactly one point
(D) The identity function i.e. f (x) = x Rx∀ ∈ is a (d) False

continuous function
Solution A → c, B → d,  C → a, D → b
Fill in the blanks in each of the Examples 37 to 41.

Example 37 The number of points at which the function  f (x) = 
1

log | |x  is

discontinuous is ________.
Solution   The given function is discontinuous at x = 0, ± 1 and hence the number of
points of discontinuity is 3.

Example 38 If 
1if 1

( )
2if 1

ax x
f x

x x
+ ≥⎧

=⎨ + <⎩
is continuous, then a should be equal to _______.

Solution  a = 2

Example 39 The derivative of log10x w.r.t. x is ________.

Solution  ( )10
1log e
x .

Example 40 If 
–1 1sec

1
xy
x

⎛ ⎞+
= ⎜ ⎟⎜ ⎟−⎝ ⎠

 + 
–1 –1sin

1
x
x

⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠

, then 
dy
dx is equal to ______.

Solution  0.
Example 41 The deriative of sin x w.r.t. cos x is ________.
Solution  – cot x
State whether the statements are True or False in each of the Exercises 42 to 46.

Example 42 For continuity, at x = a, each of lim ( )
x a

f x
+→ and  –

lim ( )
x a

f x
→  is equal to f (a).

Solution True.
Example 43 y = |x – 1| is a continuous function.
Solution  True.
Example 44 A continuous function can have some points where limit does not exist.
Solution  False.
Example 45 |sinx| is a differentiable function for every value of x.
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Solution  False.
Example 46 cos |x| is differentiable everywhere.
Solution  True.

5.3 EXERCISE

Short Answer (S.A.)
1. Examine the continuity of the function

f (x) = x3 + 2x2 – 1 at x = 1
Find which of  the functions in Exercises 2 to 10 is continuous or discontinuous
at the indicated points:

2. 2

3 5, if 2
( )

, if 2

x x
f x

x x

+ ≥⎧⎪=⎨
<⎪⎩

3.
2

1 co s 2 , 0
( )

5, 0

x if x
xf x

if x

−⎧ ≠⎪= ⎨
⎪ =⎩

at 2x= at 0x=

4.

22 3 2 , 2
( ) 2

5, 2

x x if x
f x x

if x

⎧ − −
≠⎪= −⎨

⎪ =⎩

5.

4
, 4

( ) 2( 4)
0, 4

x
if x

f x x
if x

⎧ −
≠⎪= −⎨

⎪ =⎩

at 2x= at x = 4

6.
1cos , 0

( )
0, 0

x if x
f x x

if x

⎧ ≠⎪=⎨
⎪ =⎩

              7.

1sin , 0
( )

0,

x a if x
x af x

if x a

⎧ − ≠⎪ −= ⎨
⎪ =⎩

at x = 0 at x = a

8.

1

1 , 0
( )

1
0, 0

x

x

e if x
f x

e
if x

⎧
⎪ ≠⎪= ⎨
+⎪

⎪ =⎩

      9.

2

2

, 0 1
2( )

32 3 , 1 2
2

x if x
f x

x x if x

⎧
≤ ≤⎪⎪= ⎨

⎪ − + < ≤⎪⎩

at x = 0           at x = 1

10. ( ) 1f x x x= + −  at x = 1
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Find the value of k in each of the Exercises 11 to 14 so that the function f is continuous
at the indicated point:

11.
3 8, 5

( ) at 5
2 , 5

x if x
f x x

k if x
   

     
        12.

22 16 , 2
( ) at 24 16

, 2

x

x if x
f x x

k if x

   
      

   

13. 

1 1
, 1 0

( )
2 1 , 0 1

1

kx kx
if x

xf x
x if x

x

    
           

   

at x = 0

14.

1 cos , 0
sin( )

1 , 0
2

kx if x
x xf x

if x

−⎧ ≠⎪⎪=⎨
⎪ =
⎪⎩

at x = 0

15.  Prove that the function f defined by

2 , 0
2( )

, 0

x x
x xf x

k x

⎧ ≠⎪ +=⎨
⎪ =⎩

remains discontinuous at x = 0, regardless the choice of k.
16. Find the values of a and b such that the function  f  defined by

4 , if 4
4

( ) , if 4
4 , if 4
4

x a x
x

f x a b x
x b x
x

−⎧ + <⎪ −⎪⎪= + =⎨
⎪ −⎪ + >

−⎪⎩

is a continuous function at x = 4.

17. Given the function f (x) = 
1

2x+ . Find the points of discontinuity of the composite

function y = f (f (x)).
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18. Find all points of discontinuity of the function 2
1( )

2
f t

t t
=

+ −
, where 

1
1

t
x

=
−

.

19. Show that the function f (x) = sin cosx x+  is continuous at x = π.

Examine the differentiability of f, where f is defined by

20. f (x) =  
[ ], , 0 2

( 1) , 2 3
x x if x
x x if x

≤ <⎧
⎨ − ≤ <⎩

at x = 2.

21. f (x) =  
2 1sin , 0

0 , 0

x if x
x

if x

⎧ ≠⎪
⎨
⎪ =⎩

at x = 0.

22. f (x) =  
1 , 2
5 , 2

x if x
x if x

+ ≤⎧
⎨ − >⎩

at x = 2.

23. Show that f (x) =  5x− is continuous but not differentiable at x = 5.

24. A function f : R →  R satisfies the equation f ( x + y) = f (x) f (y) for all x, y ∈R,
f (x) ≠  0. Suppose that the function is differentiable at x = 0 and f ′ (0) = 2.
Prove that f ′(x) = 2 f (x).

Differentiate each of the following w.r.t. x (Exercises 25 to 43) :

25. 2cos2 x 26. 8
8x

x
27. ( )2log x x a+ +

28. ( )5log log log x⎡ ⎤
⎣ ⎦ 29. 2sin cosx x+ 30. 2sin ( )n ax bx c+ +

31. ( )cos tan 1x+ 32. sinx2 + sin2x + sin2(x2)  33.
–1 1sin

1x

⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠

34. ( )cossin xx 35. sinmx . cosnx 36. (x + 1)2 (x + 2)3 (x + 3)4
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37.
–1 sin coscos ,

4 42
x x x+ −π π⎛ ⎞ < <⎜ ⎟

⎝ ⎠
38.

–1 1 costan ,
1 cos 4 4

x x
x

⎛ ⎞− π π
− < <⎜ ⎟⎜ ⎟+⎝ ⎠

39. –1tan (sec tan ),
2 2

x x xπ π
+ − < <

40.
–1 cos sintan , and tan –1

cos sin 2 2
a x b x ax x
b x a x b

⎛ ⎞− π π
− < < >⎜ ⎟+⎝ ⎠

41.
–1

3
1 1sec , 0

4 3 2
x

x x
⎛ ⎞

< <⎜ ⎟
−⎝ ⎠

42.
2 3

–1
3 2

3 1 1tan ,
3 3 3

a x x x
aa ax

           

43.
2 2

–1
2 2

1 1
tan , 1 1, 0

1 1

x x
x x

x x

⎛ ⎞+ + −⎜ ⎟ − < < ≠
⎜ ⎟+ − −⎝ ⎠

Find 
dy
dx  of each of the functions expressed in parametric form in Exercises from 44 to 48.

44. x = t + 
1
t ,  y = t – 

1
t 45. x =  eθ

1 1, y e−θ⎛ ⎞ ⎛ ⎞θ+ = θ−⎜ ⎟ ⎜ ⎟θ θ⎝ ⎠ ⎝ ⎠

46. x = 3cosθ – 2cos3θ,  y = 3sinθ – 2sin3θ.

47. 2 2
2 2sin , tan

1 1
t tx y
t t

= =
+ − .

48. 2
1 log 3 2log,t tx y

tt
+ +

= = .

49. If x = ecos2t and y = esin2t, prove that 
log

log
dy y x
dx x y

−
= .

50. If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that 
at

4
t

dy b
dx aπ

=

⎛ ⎞ =⎜ ⎟
⎝ ⎠ .

51. If x = 3sint – sin 3t, y = 3cost – cos 3t, find 
dy
dx  at t = 

3
π

.
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52. Differentiate 
sin

x
x  w.r.t. sinx.

53. Differentiate tan–1 
21 1x

x

⎛ ⎞+ −⎜ ⎟
⎜ ⎟
⎝ ⎠

 w.r.t. tan–1 x when x ≠ 0.

Find 
dy
dx  when x and y are connected by the relation given in each of the Exercises 54 to 57.

54. sin (xy) + 
x
y  = x2 –  y

55. sec (x + y) = xy
56. tan–1 (x2 + y2) = a

57. (x2 + y2)2 = xy

58. If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that . 1dy dx
dx dy

= .

59. If 
x
yx e= , prove that log

dy x y
dx x x

−
= .

60. If x y xy e −= , prove that  
( )21 log

log
ydy

dx y
+

= .

61. If 
(cos ).....(cos )(cos )

xxy x
∞

= , show that 
2 tan

log cos 1
dy y x
dx y x

=
− .

62. If x sin (a + y) + sin a cos (a + y) = 0, prove that 
2sin ( )
sin

dy a y
dx a

+
= .

63. If 21 x− + 21 y− = a (x – y), prove that 
2

2
1
1

dy y
dx x

−
=

−
.

64. If y = tan–1x, find 
2

2
d y
dx

in terms of y alone.
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Verify the Rolle’s theorem for each of the functions in Exercises 65 to 69.
65. f (x) = x (x – 1)2 in [0, 1].

66. f (x) = sin4x + cos4x in 0,
2
π⎡ ⎤

⎢ ⎥⎣ ⎦
.

67. f (x) = log (x2 + 2) – log3 in [–1, 1].
68. f (x) = x (x + 3)e–x/2 in [–3, 0].

69. f (x) = 24 x−  in [– 2, 2].

70. Discuss the applicability of Rolle’s theorem on the function given by

2 1, 0 1
( )

3 , 1 2
x if xf x

x if x
    

  
    

.

71. Find the points on the curve y = (cosx – 1) in [0, 2π], where the tangent is

parallel to x-axis.

72. Using Rolle’s theorem, find the point on the curve y = x (x – 4), x ∈ [0, 4], where

the tangent is parallel to x-axis.

Verify mean value theorem for each of the functions given Exercises 73 to 76.

73. f (x) = 
1

4 1x−  in [1, 4].

74. f (x) = x3 – 2x2 – x + 3 in [0, 1].

75. f (x) = sinx – sin2x in [0, π].

76. f (x) = 225 x−  in [1, 5].

77. Find a point on the curve y = (x – 3)2, where the tangent is parallel to the chord

joining the points (3, 0) and (4, 1).

78. Using mean value theorem, prove that there is a point on the curve y = 2x2 – 5x + 3

between the points A(1, 0) and B (2, 1), where tangent is parallel to the chord AB.

Also, find that point.

Long Answer (L.A.)
79. Find the values of p and q so that
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2 3 , 1( )

2 , 1
x x p if xf x
qx if x
⎧ + + ≤⎪=⎨

+ >⎪⎩

is differentiable at x = 1.
80. If xm.yn = (x + y)m+n, prove that

(i)    
dy y
dx x

=  and  (ii)   
2

2 0d y
dx

= .

81. If x = sint and y = sin pt, prove that (1–x2)
2

2
d y
dx

 – x 2 0dy p y
dx

+ = .

82. Find 
dy
dx , if y = xtanx + 

2 1
2

x +
.

Objective Type Questions
Choose the correct answers from the given four options in each of the Exercises 83 to 96.

83. If f (x) = 2x and g (x) = 
2

1
2
x

+ , then which of the following can be a discontinuous

function
(A)   f (x) + g (x)                 (B)   f (x) – g (x)

(C) f (x) . g (x) (D)
( )
( )

g x
f x

84. The function f (x) =  
2

3
4

4
x

x x
−
− is

(A) discontinuous at only one point

(B) discontinuous at exactly two points

(C) discontinuous at exactly three points

(D) none of these

85. The set of points where the function f given by f (x) = 2 1x−  sinx is differentiable is

(A) R (B) R – 
1
2

⎧ ⎫
⎨ ⎬
⎩ ⎭
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(C) (0, )∞ (D) none of these
86. The function  f (x) = cot x is discontinuous on the set

(A) { }:x n n= π ∈Z (B) { }2 :x n n= π ∈Z

(C) ( )2 1 ;
2

x n nπ⎧ ⎫= + ∈⎨ ⎬
⎩ ⎭

Z (iv) ;
2

nx nπ⎧ ⎫= ∈⎨ ⎬
⎩ ⎭

Z

87. The function f (x) = xe  is
(A) continuous everywhere but not differentiable at x = 0
(B) continuous and differentiable everywhere
(C) not continuous at x = 0
(D) none of these.

88. If f (x) = 2 1sinx
x

 , where x ≠ 0, then the value of the function f at x = 0, so that

the function is continuous at x = 0, is
(A) 0 (B) – 1
(C) 1 (D) none of these

89. If 
1 ,

2 ( ) = 
sin ,

2

mx if x
f x

x n if x

π⎧ + ≤⎪⎪
⎨ π⎪ + >
⎪⎩

 , is continuous at x = 
2
π

, then

(A)   m = 1, n = 0                 (B)   m = 
2

nπ
+ 1

(C) n = 
2

mπ
(D) m = n = 

2
π

90. Let f (x) = |sin x|. Then
(A)  f  is everywhere differentiable
(B)  f  is everywhere continuous but not differentiable at x = nπ, n ∈ Z.

(C) f  is everywhere continuous but not differentiable at x = (2n + 1) 
2
π

,

      n ∈ Z.
(D) none of these

91. If y = log 
2

2
1
1

x
x

⎛ ⎞−
⎜ ⎟
+⎝ ⎠

, then 
dy
dx  is equal to
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(A)
3

4
4

1
x
x− (B) 4

4
1

x
x

−
−

(C) 4
1

4 x− (D)
3

4
4

1
x
x

−
−

92.    If y = sin x y+ , then 
dy
dx  is equal to

(A)
cos
2 1

x
y− (B)

cos
1 2

x
y−

(C)
sin

1 2
x
y− (D)

sin
2 1

x
y−

93. The derivative of cos–1 (2x2 – 1) w.r.t. cos–1x is

(A) 2 (B) 2

1

2 1 x

−

−

(C)
2
x (D) 1 – x2

94. If x = t2, y = t3, then 
2

2
d y
dx

 is

(A)
3
2 (B)

3
4t

(C)
3
2t (D)

3
2t

95. The value of c in Rolle’s theorem for the function f (x) = x3 – 3x in the interval

[0, 3 ] is

(A) 1                (B)  – 1
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(C)
3
2 (D)

1
3

96. For the function  f (x) = x + 
1
x , x ∈ [1, 3], the value of c for mean value theorem is

(A) 1                  (B)  3

         (C)  2                          (D) none of these
Fill in the blanks in each of the Exercises 97 to 101:
97. An example of a function which is continuous everywhere but fails to be

differentiable exactly at  two points is __________ .
98. Derivative of x2 w.r.t. x3 is _________.

99. If f (x) = |cosx|, then f ′ 4
   

     = _______ .

100. If f (x) = |cosx – sinx | , then f ′ 3
   

     = _______.

101. For the curve 1x y  , 
1 1at ,
4 4

dy
dx

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is __________.

State True or False for the statements in each of the Exercises 102 to 106.
102. Rolle’s theorem is applicable for the function f (x) = |x – 1| in [0, 2].
103. If f  is continuous on its domain D, then | f | is also continuous on D.
104. The composition of two continuous function is a continuous function.
105. Trigonometric and inverse - trigonometric functions are differentiable in their

respective domain.
106. If  f  . g  is continuous at x = a, then f  and g are separately continuous at x = a.



6.1 Overview

6.1.1 Rate of change of quantities

For the function y = f (x), 
d
dx (f (x)) represents the rate of change of y with respect to x.

Thus if ‘s’ represents the distance and ‘t’ the time, then 
ds
dt represents the rate of

change of distance with respect to time.

6.1.2 Tangents and normals

A line touching a curve y = f (x) at a point (x1, y1) is called the tangent to the curve at

that point and its equation is given 
1 11 ( , ) 1( – )x y

dyy y x x
dx

⎛ ⎞− =⎜ ⎟
⎝ ⎠

.

The normal to the curve is the line perpendicular to the tangent at the point of contact,
and its equation is given as:

y – y1 =  

1 1

1

( , )

–1 ( )
x y

x x
dy
dx

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

The angle of intersection between two curves is the angle between the tangents to the

curves at the point of intersection.

6.1.3 Approximation

Since f ′(x) = 
0

( ) – ( )lim
x

f x x f x
xΔ →

+Δ
Δ

, we can say that f ′(x) is approximately equal

to 
( ) – ( )f x x f x

x
+Δ
Δ

⇒  approximate value of f (x + Δ x) = f (x) + Δx .f ′ (x).

Chapter 6
APPLICATION OF DERIVATIVES
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6.1.4 Increasing/decreasing functions

A continuous function in an interval (a, b) is :
(i) strictly increasing if for all x1, x2 ∈ (a, b), x1< x2 ⇒ f (x1) < f (x2) or for all

x ∈ (a, b), f ′  (x) > 0
(ii) strictly decreasing if for all x1, x2 ∈ (a, b),  x1 < x2 ⇒  f (x1) > f (x2) or for all

x ∈ (a, b), f ′(x) < 0

6.1.5  Theorem : Let f  be a continuous function on [a, b] and differentiable in (a, b) then
(i) f  is increasing in [a, b] if f ′ (x) > 0 for each  x ∈ (a, b)
(ii) f  is decreasing in [a, b] if  f ′ (x) < 0 for each x ∈ (a, b)
(iii) f  is a constant function in [a, b] if  f ′ (x) = 0 for each x ∈ (a, b).

6.1.6  Maxima and minima

Local Maximum/Local Minimum for a real valued function f

A point c in the interior of the domain of f, is called

(i) local maxima, if there exists an h > 0 , such that f (c) > f (x), for all x in
(c – h, c + h).

The value f (c) is called the local maximum value of  f .

(ii) local minima if there exists an h > 0 such that f (c) < f (x), for all x in
(c – h, c + h).

The value f (c) is called the local minimum value of f.

A function f  defined over [a, b] is said to have maximum (or absolute maximum) at
x = c, c ∈ [a, b], if f  (x) ≤ f (c) for all x ∈ [a, b].

Similarly, a function f (x) defined over [a, b] is said to have a minimum [or absolute
minimum] at x = d,  if f (x) ≥ f (d) for all x ∈ [a, b].

6.1.7 Critical point of f : A point c in the domain of a function f at which either
 f ′ (c) = 0 or f is not differentiable is called a critical point of f.

Working rule for finding points of local maxima or local minima:

(a) First derivative test:

(i) If  f ′ (x) changes sign from positive to negative as x increases through
c, then c is a point of local maxima, and f (c) is local maximum value.
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(ii) If  f ′ (x) changes sign from negative to positive as x increases through
c, then c is a point of local minima, and f (c) is local minimum value.

(iii) If  f ′ (x) does not change sign as x increases through c, then c is
neither a point of  local minima nor a point of local maxima. Such a
point is called a point of inflection.

(b) Second Derivative test: Let f be a function defined on an interval I and
c ∈ I. Let f  be twice differentiable at c. Then

(i) x = c is a point of local maxima if f ′(c) = 0 and f ″(c) < 0. In this case
f (c) is then the local maximum value.

(ii) x = c is a point of local minima if f ′ (c) = 0 and f ″(c) > 0. In this case
f (c) is the local minimum value.

(iii) The test fails if  f ′(c) = 0 and f ″ (c) = 0. In this case, we go back to
first derivative test.

6.1.8 Working rule for finding absolute maxima and or absolute minima :

Step 1 :  Find all the critical points of f in the given interval.

Step 2 :  At all these points and at the end points of the interval, calculate the
values of f.

Step 3 : Identify the maximum and minimum values of f out of the values
calculated in step 2. The maximum value will be the absolute maximum
value of f  and the minimum value will be the absolute minimum
value of  f.

6.2  Solved Examples

Short Answer Type (S.A.)

Example 1 For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then
how fast is the slope of curve changing when x = 3?

Solution  Slope of curve = 
dy
dx  = 5 – 6x2

⇒
d dy
dt dx
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = –12x.
dx
dt



120    MATHEMATICS

        = –12 . (3) . (2)

        = –72 units/sec.
Thus, slope of curve is decreasing at the rate of 72 units/sec when x is increasing at the
rate of 2 units/sec.

Example 2 Water is dripping out from a conical funnel of semi-vertical angle 
4
π

at the

uniform rate of 2 cm2 /sec in the surface area, through a tiny hole at the vertex of the
bottom. When the slant height of cone  is 4 cm, find the rate of decrease of the slant
height of water.
Solution If s represents the surface area, then

d s
d t = 2cm2 /sec

s = π r.l = πl . sin 4
π

.l = 
2

2
lπ

Therefore, 
ds
dt = 

2 .
2

dll
dt

π
= 2 . dll

dt
π

when l = 4 cm, 
1 1 2.2  cm/s

42 .4 2 2
dl
dt
= = =

ππ π
.

Example 3 Find the angle of intersection of the curves y2 = x and x2 = y.

Solution Solving the given equations, we have y2 = x and x2 = y ⇒ x4 = x  or   x4 – x = 0

⇒  x (x3 – 1) = 0 ⇒ x = 0, x = 1

Therefore, y = 0,  y = 1

i.e. points of intersection are (0, 0) and (1, 1)

Further y2 = x ⇒ 2y
dy
dx

 = 1 ⇒ 
dy
dx

 = 
1

2y

and x2 = y ⇒ 
dy
dx

 = 2x.

l

� / 4� / 4

h

r

Fig. 6.1Fig. 6.1
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At (0, 0), the slope of the tangent to the curve y2 = x is parallel to y-axis and the
tangent to the curve x2 = y is parallel to x-axis.

⇒ angle of intersection = 
2
π

At (1, 1), slope of the tangent to the curve y2 = x is equal to 
1
2

 and that of x2 = y is 2.

tan θ  = 

12 –
2

1 1+  = 
3
4

. ⇒   θ = tan–1 
3
4

⎛ ⎞
⎜ ⎟
⎝ ⎠

Example 4 Prove that the function f (x) = tanx – 4x is strictly decreasing on 
– ,
3 3
π π⎛ ⎞

⎜ ⎟
⎝ ⎠

.

Solution  f (x) = tan x – 4x ⇒ f ′(x) = sec2x – 4

When 
–
3
π

< x <
3
π

, 1 < secx < 2

Therefore, 1 < sec2x < 4 ⇒ –3 < (sec2x – 4) < 0

Thus for 
–
3
π

< x <
3
π

, f ′(x) < 0

Hence f is strictly decreasing on 
– ,
3 3
π π⎛ ⎞

⎜ ⎟
⎝ ⎠

.

Example 5  Determine for which values of x, the function y = x4 – 
34

3
x

is increasing

and for which values, it is decreasing.

Solution  y = x4 – 
34

3
x

⇒ 
dy
dx = 4x3 – 4x2 = 4x2 (x – 1)
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Now, 
dy
dx = 0 ⇒ x = 0, x = 1.

Since f ′ (x) < 0 x∀ ∈(– ∞, 0) ∪ (0, 1) and f is continuous in (– ∞, 0] and [0, 1].
Therefore f  is decreasing in (– ∞, 1] and  f  is increasing in [1, ∞).

Note: Here f  is strictly decreasing in (– ∞, 0) ∪ (0, 1) and is strictly increasing in
(1, ∞).

Example 6 Show that the function f (x) = 4x3 – 18x2 + 27x – 7 has neither maxima
nor minima.

Solution  f (x) = 4x3 – 18x2 + 27x – 7

 f ′ (x) = 12x2 – 36x + 27 = 3 (4x2 – 12x + 9) = 3 (2x – 3)2

f ′ (x) = 0 ⇒ x = 
3
2

 (critical point)

Since  f ′ (x) > 0 for all x 
3
2

<  and for all x >
3
2

Hence x = 
3
2 is a point of inflexion i.e., neither a point of maxima nor a point of minima.

x = 
3
2 is the only critical point, and  f  has neither maxima nor minima.

Example 7  Using differentials, find the approximate value of 0.082

Solution  Let f (x) = x

Using f (x + Δx) f (x) + Δx . f ′(x), taking x = .09 and Δx = – 0.008,

we get f (0.09 – 0.008) =  f (0.09) +  (– 0.008) f ′ (0.09)

⇒ 0.082  = 0.09  – 0.008 . 
1

2 0.09
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.3 – 
0.008
0.6

= 0.3 – 0.0133 = 0.2867.



APPLICATION OF DERIVATIVES    123

Example 8  Find  the condition for the curves 
2 2

2 2–x y
a b

= 1; xy = c2  to intersect

orthogonally.

Solution  Let the curves intersect at (x1, y1). Therefore,

2 2

2 2–x y
a b

= 1 ⇒ 2 2
2 2–x y dy

dxa b = 0  ⇒  
2

2
dy b x
dx a y

=

⇒ slope of tangent at the point of intersection  (m1) = 
2

1
2

1

b x
a y

Again xy = c2 ⇒ 
dyx y
dx

+ = 0 ⇒ 
–dy y

dx x
= ⇒ m2 = 

1

1

y
x
−

 .

For orthoganality, m1 × m2 = – 1  ⇒ 
2

2
b
a

= 1  or a2 – b2 = 0.

Example 9 Find all the points of local maxima and local minima of the function

f (x) = 4 3 23 45– – 8 – 105
4 2

x x x + .

Solution  f ′ (x) = –3x3 – 24x2 – 45x

= – 3x (x2 + 8x + 15) = – 3x (x + 5) (x + 3)

f ′  (x) = 0 ⇒ x = –5,  x = –3, x = 0

f ″(x) = –9x2 – 48x – 45

= –3 (3x2 + 16x + 15)

f  ″(0) = – 45 < 0. Therefore, x = 0 is point of local maxima

f ″(–3) = 18 > 0. Therefore, x = –3 is point of local minima

f ″(–5) = –30 < 0. Therefore x = –5 is point of local maxima.
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Example 10  Show that the local maximum value of 1x
x

+ is less than local minimum

value.

Solution  Let  y = 1x
x

+  ⇒ 
dy
dx

 = 1 – 2
1
x ,

dy
dx = 0 ⇒ x2 = 1 ⇒ x = ± 1.

2

2
d y
dx

= + 3
2
x , therefore 

2

2
d y
dx (at x = 1) > 0 and 

2

2
d y
dx (at x = –1) < 0.

Hence local maximum value of y is at x = –1 and the local maximum value = – 2.

Local minimum value of y is at x = 1 and local minimum value = 2.

Therefore, local maximum value (–2) is less than local minimum value 2.

Long Answer Type (L.A.)
Example 11 Water is dripping out at a steady rate of 1 cu cm/sec through a tiny hole
at the vertex of the conical vessel, whose axis is vertical. When the slant height of
water in the vessel is 4 cm, find the rate of decrease of slant height, where the vertical

angle of the conical vessel is 
6
π

.

Solution  Given that 
dv
dt  = 1 cm3/s, where v is the volume of water in the

conical vessel.

From the Fig.6.2, l = 4cm,  h = l cos 
6
π

 = 
3

2
l  and r = l sin

6
π

= 
2
l

.

Therefore,  v =  
1
3

πr2h = 
2

33 3
3 4 2 24

l l l   .
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23
8

dv dll
dt dt

π
=

Therefore, 1 = 
3 16.
8

dl
dt

π

⇒      1
2 3

dl
dt
=

π
cm/s.

Therefore, the rate of decrease of slant height = 
1

2 3π
cm/s.

Example 12 Find the equation of all the tangents to the curve y = cos (x + y),
–2π ≤ x ≤ 2π, that are parallel to the line  x + 2y = 0.

Solution   Given that y = cos (x + y) ⇒ 
dy
dx = – sin (x + y) 1 dy

dx
⎡ ⎤+⎢ ⎥⎣ ⎦

...(i)

or  
dy
dx

 = – 
( )
( )

sin
1 sin

x y
x y
+

+ +

Since tangent is parallel to x + 2y = 0, therefore slope of tangent = 
1–
2

Therefore, 
( )
( )

sin
–

1 sin
x y

x y
+

+ + = 
1–
2

 ⇒ sin (x + y) = 1 .... (ii)

Since cos (x + y) = y and sin (x + y) = 1 ⇒ cos2 (x + y) + sin2 (x + y) = y2 + 1

⇒ 1 = y2 + 1 or y = 0.

Therefore,  cosx = 0.

Therefore,   x = (2n + 1)
2
π

,  n = 0, ± 1, ± 2...

l

� / 6� / 6

h

r

Fig. 6.2Fig. 6.2
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Thus, x =  
3,

2 2
π π

± ± ,  but x = 
2
π

, x = 
–3

2
π

satisfy equation (ii)

Hence, the points are , 0
2
π⎛ ⎞

⎜ ⎟
⎝ ⎠

,
–3 ,0

2
π⎛ ⎞

⎜ ⎟
⎝ ⎠

.

Therefore, equation of tangent at , 0
2
π⎛ ⎞

⎜ ⎟
⎝ ⎠

 is y = 
1–
2

–
2

x π⎛ ⎞
⎜ ⎟
⎝ ⎠

 or 2x + 4y – π = 0, and

equation of tangent at 
–3 ,0

2
π⎛ ⎞

⎜ ⎟
⎝ ⎠

is y = 
1–
2

3
2

x π⎛ ⎞+⎜ ⎟
⎝ ⎠

or 2x + 4y + 3π = 0.

Example 13  Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
Solution  Given that  y2 = 4ax...(i) and x2 = 4by... (ii). Solving (i) and (ii), we get

22

4
x
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

= 4ax  ⇒  x4 = 64 ab2 x

or x (x3 – 64 ab2) = 0  ⇒  x = 0, 
1 2
3 34x a b=

Therefore, the points of intersection are (0, 0) and 
1 2 2 1
3 3 3 34 ,4a b a b

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

.

Again,  y2 = 4ax ⇒ 
4 2
2

dy a a
dx y y

= = and x2 = 4by ⇒   
2
4 2

dy x x
dx b b

= =

Therefore, at (0, 0) the tangent to the curve y2 = 4ax is parallel to y-axis and tangent
to the curve x2 = 4by is parallel to x-axis.

 ⇒   Angle between curves = 
2
π

At 
1 2 2 1
3 3 3 34 ,4a b a b

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

, m1 (slope of the tangent to the curve (i)) = 
1
3

2 a
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

= 

1
3

2 1
3 3

2 1
2

4

a a
b

a b

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, m2 (slope of the tangent to the curve (ii)) = 

1 2 1
3 3 34 2
2

a b a
b b

⎛ ⎞= ⎜ ⎟
⎝ ⎠
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Therefore, tan θ = 
2 1

1 2

–
1
m m

m m+  = 

1 1
3 3

1 1
3 3

12 –
2

11 2
2

a a
b b

a a
b b

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞+ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 =  

1 1
3 3

2 2
3 3

3 .

2

a b

a b
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠

Hence, θ = tan–1

1 1
3 3

2 2
3 3

3 .

2

a b

a b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

Example 14  Show that the equation of normal at any point on the curve
x = 3cos θ – cos3θ, y  =  3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ.

Solution   We have x = 3cos θ – cos3θ

Therefore, dx
dθ

 = –3sin θ + 3cos2θ sinθ = – 3sinθ (1 – cos2θ) = –3sin3θ .

dy
dθ

 = 3cos θ – 3sin2θ cosθ =  3cosθ  (1 – sin2θ) = 3cos3θ

3

3
cos–
sin

dy
dx

θ
=

θ
. Therefore, slope of normal = 

3

3
sin
cos

θ
+

θ

Hence the equation of normal is

y – (3sinθ – sin3θ) = 
3

3
sin
cos

θ
θ

[x – (3cosθ – cos3θ)]

⇒  y cos3θ – 3sinθ cos3θ + sin3θ cos3θ = xsin3θ – 3sin3θ cosθ + sin3θ cos3θ

⇒  y cos3θ – xsin3θ = 3sinθ cosθ (cos2θ – sin2θ)
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     = 
3
2

sin2θ . cos2θ

     = 
3
4

sin4θ

or 4 (ycos3 θ – xsin3 θ) = 3 sin4θ.

Example 15 Find the maximum and minimum values of

f (x) = secx + log cos2x, 0 < x < 2π

Solution   f (x) = secx + 2 log cosx

Therefore,   f ′ (x) = secx tanx – 2 tanx = tanx (secx –2)

 f ′  (x) = 0 ⇒ tanx = 0 or secx = 2 or cosx = 
1
2

Therefore, possible values of x are  x = 0, or x = π  and

     x = 
3
π

or x = 
5
3
π

Again,     f ′′  (x)  = sec2x (secx –2) + tanx (secx tanx)

                = sec3x + secx tan2x – 2sec2x

   = secx (sec2x + tan2x – 2secx). We note that

f ′′  (0) = 1 (1 + 0 – 2) = –1 < 0. Therefore, x = 0 is a point of maxima.

f ′′  (π) = –1 (1 + 0 + 2) = –3 < 0. Therefore, x = π is a point of maxima.

f ′′  3
π⎛ ⎞

⎜ ⎟
⎝ ⎠

 = 2 (4 + 3 – 4) = 6 > 0. Therefore, x = 
3
π

 is a point of minima.

f ′′  
5
3
π⎛ ⎞

⎜ ⎟
⎝ ⎠

 = 2 (4 + 3 – 4) = 6 > 0. Therefore, x = 
5
3
π

 is a point of minima.
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Maximum Value of y at x = 0 is 1 + 0 = 1

Maximum Value of y at x = π is –1 + 0 = –1

Minimum Value of y at x = 
3
π

is 2 + 2 log 1
2

 = 2 (1 – log2)

Minimum Value of y at x = 
5
3
π

is 2 + 2 log 1
2

 = 2 (1 – log2)

Example 16  Find the area of greatest rectangle that can be inscribed in an ellipse
2 2

2 2 1x y
a b

+ = .

Solution  Let ABCD be the rectangle of maximum area with sides AB = 2x and

BC = 2y, where C (x, y) is a point on the ellipse  
2 2

2 2 1x y
a b

+ =  as shown in the Fig.6.3.

The area A of the rectangle is 4xy i.e. A = 4xy which gives A2 = 16x2y2 = s (say)

Therefore, s = 16x2 
2

2
21– .x b

a
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
2

2
16b

a
 (a2x2 – x4)

⇒
2

2
16ds b

dx a
= . [2a2x – 4x3].

Again,  
ds
dx  = 0 ⇒  x = and

2 2
a by=

Now,
2 2

2 2
16d s b

dx a
= [2a2 – 12x2]

At
2 2 2

2 2 2
2 2 2

16 16, [2 6 ] ( 4 ) 0
2

a d s b bx a a a
dx a a

= = − = − <

D C
(0, )b(0, )b

A B
(0, – )b(0, – )b

( , 0)a( , 0)a(– , 0)a(– , 0)a (0, 0)(0, 0) x

y

Fig. 6.3Fig. 6.3



130    MATHEMATICS

Thus at x = 2
a

, y = 2
b

, s  is maximum and hence the area A is maximum.

Maximum area = 4.x.y = 4 . 2
a

. 2
b

 = 2ab sq units.

Example 17 Find the difference between the greatest and least values of the

function f (x) = sin2x – x, on – ,
2 2
π π⎡ ⎤

⎢ ⎥⎣ ⎦
.

Solution  f (x) = sin2x – x

⇒ f ′(x) = 2 cos2 x – 1

Therefore,  f ′(x) = 0 ⇒ cos2x = 
1
2

⇒ 2x is or
3 3

   
⇒ x = – or

6 6
  

–
2

f π⎛ ⎞
⎜ ⎟
⎝ ⎠

 = sin (– π) + 
2 2
π π
=

–
6

f π⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
2sin –
6 6
π π⎛ ⎞+⎜ ⎟

⎝ ⎠
= 

3–
2 6

π
+

6
f π⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
2sin –
6 6
π π⎛ ⎞

⎜ ⎟
⎝ ⎠

= 
3 –

2 6
π

2
f π⎛ ⎞
⎜ ⎟
⎝ ⎠

 = ( )sin –
2
π

π = –
2
π

Clearly, 
2
π

is the greatest value and –
2
π

is the least.

Therefore, difference = 
2
π

 + 
2
π

= π
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Example 18 An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius

a. Show that the area of triangle is maximum when θ = 
6
π

.

Solution Let ABC be an isosceles triangle inscribed in the circle with radius a such
that  AB = AC.

AD = AO + OD = a + a cos2θ and BC = 2BD = 2a sin2θ (see fig. 16.4)

Therefore, area of  the triangle ABC i.e. Δ = 
1
2

BC . AD

= 
1
2

2a sin2θ . (a + a cos2θ)

=  a2sin2θ (1 + cos2θ)

⇒    Δ = a2sin2θ + 
1
2

a2 sin4θ

Therefore, 
d
d
Δ
θ

= 2a2cos2θ + 2a2cos4θ

           = 2a2(cos2θ + cos4θ)

d
d
Δ
θ

= 0 ⇒ cos2θ = –cos4θ = cos (π – 4θ)

Therefore, 2θ = π – 4θ ⇒ θ = 
6
π

2

2
d
d
Δ
θ

 = 2a2 (–2sin2θ – 4sin4θ) < 0 (at  θ = 
6
π

).

Therefore, Area of triangle is maximum when  θ = 
6
π

.
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Objective Type Questions

Choose the correct answer from the given four options in each of the following Examples
19 to 23.

Example 19 The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which
passes through origin is:

(A) 1 (B) 
1
3

(C) 2 (D) 
1
2

Solution Let (x1, y1) be the point on the given curve 3y = 6x – 5x3 at which the normal

passes through the origin. Then we have 
1 1

2
1

( , )
2 – 5

x y

dy x
dx

⎛ ⎞ =⎜ ⎟
⎝ ⎠

. Again the equation of

the normal at (x1, y1) passing through the origin gives 2 1
1 2

1 1

– –32 –5
6 –5

xx
y x

= = .

Since x1 = 1 satisfies the equation, therefore, Correct answer is (A).

Example 20 The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2

(A) touch each other (B) cut at right angle

(C) cut at an angle 
3
π

(D) cut at an angle 
4
π

Solution From first equation of the curve, we have 3x2 – 3y2 – 6xy
dy
dx  = 0

⇒
dy
dx  = 

2 2–
2

x y
xy = (m1) say and second equation of the curve gives

6xy + 3x2
dy
dx – 3y2

dy
dx = 0 ⇒

dy
dx =  2 2

–2
–
xy

x y = (m2) say

Since   m1 . m2 = –1. Therefore, correct answer is (B).
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Example 21 The tangent to the curve given by x = et . cost, y = et . sint at t = 
4
π

makes

with x-axis an  angle:

(A) 0 (B) 
4
π

(C) 
3
π

(D) 
2
π

Solution 
dx
dt = – et . sint + etcost, 

dy
dt = etcost + etsint

Therefore, 
4

t

dy
dx π

=

⎛ ⎞
⎜ ⎟
⎝ ⎠ = 

cos sin
cos – sin

t t
t t
+

= 
2

0
 and hence the correct answer is (D).

Example 22 The equation of the normal to the curve y = sinx at (0, 0) is:

(A) x = 0 (B) y = 0 (C) x + y = 0         (D) x – y = 0

Solution 
dy
dx = cosx. Therefore, slope of normal = 

0

–1
cos xx =

⎛ ⎞
⎜ ⎟
⎝ ⎠ = –1. Hence the equation

of normal is y – 0 = –1(x – 0) or x + y = 0

Therefore, correct answer is (C).

Example 23 The point on the curve y2 = x, where the tangent makes an angle of

4
π

with x-axis is

(A) 
1,

2 4
1⎛ ⎞

⎜ ⎟
⎝ ⎠

(B) 
1,

4 2
1⎛ ⎞

⎜ ⎟
⎝ ⎠

(C) (4, 2) (D) (1, 1)

Solution 
1

2
dy
dx y

= = tan
4
π

= 1 ⇒ y = 
1
2

 ⇒ x = 
4
1

Therefore, correct answer is B.
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Fill in the blanks in each of the following Examples 24 to 29.

Example 24 The values of  a for which y = x2 + ax + 25 touches the axis of x
are______.

Solution 0 2 0dy x a
dx

= ⇒ + = i.e. x = 
2
a

− ,

Therefore,
2

25 0
4 2

a aa⎛ ⎞+ − + =⎜ ⎟
⎝ ⎠

⇒ a =  ± 10

Hence, the values of a are ± 10.

Example 25  If  f (x) = 2
1

4 2 1x x+ + , then its maximum value is _______.

Solution   For f  to be maximum, 4x2 + 2x + 1 should be minimum i.e.

4x2 + 2x + 1  = 4 (x + 
1
4

)2 + 
11
4

⎛ ⎞−⎜ ⎟
⎝ ⎠

giving the minimum value of 4x2 + 2x + 1 = 
3
4

.

Hence maximum value of  f = 
4
3

.

Example 26  Let f have second deriative at c such that f ′(c) = 0 and
f ″(c) > 0, then c is a point of ______.

Solution  Local minima.

Example 27  Minimum value of  f  if f (x) = sinx in 
– ,
2 2
π π⎡ ⎤

⎢ ⎥⎣ ⎦
is _____.

Solution   –1

Example 28 The maximum value of sinx + cosx is _____.

Solution  2 .
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Example 29  The rate of change of volume of a sphere with respect to its surface
area, when the radius is 2 cm, is______.

Solution  1 cm3/cm2

v = 3 24 4
3

dvr r
dr

π ⇒ = π , s = 24 dsr
dr

π ⇒  = 8
2

dv rr
ds

π ⇒ = = 1 at r = 2.

6.3  EXERCISE

Short Answer (S.A.)

1. A spherical ball of salt is dissolving in water in such a manner that the rate of
decrease of the volume at any instant is propotional to the surface. Prove that
the radius is decreasing at a constant rate.

2. If the area of a circle increases at a uniform rate, then prove that perimeter
varies inversely as the radius.

3. A kite is moving horizontally at a height of 151.5 meters. If the speed of kite is
10 m/s, how fast is the string being let out; when the kite is 250 m away from
the boy who is flying the kite? The height of boy is 1.5 m.

4. Two  men A and B start with velocities v at the same time from the junction of
two roads inclined at 45° to each other. If they travel by different roads, find
the rate at which they are being seperated..

5. Find an angle θ, 0 < θ < 2
 

, which increases twice as fast as its sine.

6. Find the approximate value of (1.999)5.

7. Find the approximate volume of metal in a hollow spherical shell whose internal
and external radii are 3 cm and 3.0005 cm, respectively.

8. A man, 2m tall, walks at the rate of 
21
3 m/s towards a street light which is

15
3 m above the ground. At what rate is the tip of his shadow moving? At what
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rate is the length of the shadow changing when he is 
13
3 m from the base of

the light?

9. A swimming pool is to be drained for cleaning. If L represents the number of
litres of water in the pool t seconds after the pool has been plugged off to drain
and L = 200 (10 – t)2. How fast is the water running out at the end of 5
seconds? What is the average rate at which the water flows out during the
first 5 seconds?

10. The volume of a cube increases at a constant rate. Prove that the increase in
its surface area varies inversely as the length of the side.

11. x and y are the sides of two squares such that y = x – x2 . Find the rate of
change of the area of second square with respect to the area of first square.

12. Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.

13. Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.

14. Find the co-ordinates of the point on the curve  x y = 4 at which tangent
is equally inclined to the axes.

15. Find the angle of intersection of the curves y = 4 – x2 and y = x2.

16. Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the
point (1, 2).

17. Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are
parallel to the line x + 3y = 4.

18. At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel
to the y-axis?

19. Show that the line  x y
a b = 1, touches the curve y = b .

– x
ae at the point where

the curve intersects the axis of y.

20. Show that f (x) = 2x + cot–1x + log ( )21 x x+ − is increasing in R.
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21. Show that for a  1, f (x) = 3 sinx – cosx – 2ax + b is decreasing in R.

22. Show that f (x) = tan–1(sinx + cosx) is an increasing function in 0,
4
   

    .

23. At what point, the slope of the curve y = – x3 + 3x2 + 9x – 27 is maximum?
Also find the maximum slope.

24. Prove that f (x) = sinx + 3 cosx has maximum value at x = 6
 

.

Long Answer (L.A.)

25. If the sum of the lengths of the hypotenuse and a side of a right angled triangle
is given, show that the area of the triangle is maximum when the angle between

them is 3
 

.

26. Find the points of local maxima, local minima and the points of inflection of the
function f (x) = x5 – 5x4 + 5x3 – 1.  Also find the corresponding local maximum
and local minimum values.

27. A telephone company in a town has 500 subscribers on its list and collects
fixed charges of Rs 300/- per subscriber per year. The company proposes to
increase the annual subscription and it is believed that for every increase of
Re 1/- one subscriber will discontinue the service. Find what increase will
bring maximum profit?

28. If the straight line x cosα + y sinα = p touches the curve 
2 2

2 2 x y
a b

= 1, then

prove that a2 cos2α + b2 sin2α = p2.

29. An open box with square base is to be made of a given quantity of card board

of area c2. Show that the maximum volume of the box is 
3

6 3
c

 cubic units.

30. Find the dimensions of the rectangle of perimeter 36 cm which will sweep out
a volume as large as possible, when revolved about one of its sides. Also find
the maximum volume.
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31. If the sum of the surface areas of cube and a sphere is constant, what is the
ratio of an edge of the cube to the diameter of the sphere, when the sum of
their volumes is minimum?

32. AB is a diameter of a circle and C is any point on the circle. Show that the
area of Δ ABC is maximum, when it is isosceles.

33. A metal box with a square base and vertical sides is to contain 1024 cm3. The
material for the top and bottom costs Rs 5/cm2 and the material for the sides
costs Rs 2.50/cm2 . Find the least cost of the box.

34. The sum of the surface areas of a rectangular parallelopiped with sides x, 2x

and 3
x

and a sphere is given to be constant. Prove that the sum of their volumes

is minimum, if x is equal to three times the radius of the sphere. Also find the
minimum value of the sum of their volumes.

Objective Type Questions

Choose the correct answer from the given four options in each of the following questions
35 to 39:

35. The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. The
rate at which the area increases, when side is 10 cm is:

(A) 10 cm2/s (B) 3 cm2/s (C) 10 3 cm2/s (D) 
10
3 cm2/s

36. A ladder, 5 meter long, standing on a horizontal floor, leans against a vertical
wall. If the top of the ladder slides downwards at the rate of 10 cm/sec, then
the rate at which the angle between the floor and the ladder is decreasing
when lower end of ladder is 2 metres from the wall is:

(A) 
1

10 radian/sec (B) 
1
20 radian/sec (C) 20 radian/sec

(D) 10 radian/sec

37. The curve y = 
1
5x has at (0, 0)
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(A) a vertical tangent (parallel to y-axis)

(B) a horizontal tangent (parallel to x-axis)

(C) an oblique tangent

(D) no tangent

38. The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line
x + 3y = 8 is

(A) 3x – y = 8 (B) 3x + y + 8 = 0

(C) x + 3y   8 = 0 (D) x + 3y = 0

39. If the curve ay + x2 = 7  and x3 = y, cut orthogonally at (1, 1), then the value of
a is:

(A) 1 (B) 0 (C) – 6 (D) .6

40. If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y

(A) .32 (B) .032 (C) 5.68 (D) 5.968

41. The equation of tangent to the curve y (1 + x2) = 2 – x, where it crosses x-axis
is:

(A) x + 5y = 2 (B) x – 5y = 2

(C) 5x – y = 2 (D) 5x + y = 2

42. The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to
x-axis are:

(A) (2, –2), (–2, –34) (B) (2, 34), (–2, 0)

(C) (0, 34), (–2, 0) (D) (2, 2), (–2, 34)

43. The tangent to the curve y = e2x at the point (0, 1) meets x-axis at:

(A) (0, 1) (B) 
1– ,0
2

  
    (C) (2, 0) (D) (0, 2)

44. The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point
(2, –1) is:
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(A) 
22
7 (B) 

6
7 (C) 

– 6
7 (D) – 6

45. The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of

(A) 4
 

(B) 3
 

(C) 2
 

(D) 6
 

46. The interval on which the function f (x) = 2x3 + 9x2 + 12x – 1 is decreasing is:

(A) [–1,  ) (B) [–2, –1] (C) (–  , –2] (D) [–1, 1]

47. Let the f : R → R be defined by f (x) = 2x + cosx, then f :

(A) has a minimum at x = π (B) has a maximum, at x = 0

(C) is a decreasing function (D) is an increasing function

48. y = x (x – 3)2 decreases for the values of x given by :

(A) 1 < x < 3 (B) x < 0 (C) x > 0 (D) 0 < x < 
3
2

49. The function f (x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly

(A) increasing in 
3ππ,
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

(B) decreasing in 
π , π
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

(C) decreasing in 
– ,
2 2
    

    
(D) decreasing in 0,

2
   

    

50. Which of the following functions is decreasing on 0,
2
   

    

(A) sin2x (B) tanx (C) cosx (D) cos 3x

51. The function f (x) = tanx – x

(A) always increases (B) always decreases

(C) never increases (D) sometimes increases and sometimes
      decreases.
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52. If x is real, the minimum value of x2 – 8x + 17 is

(A) –1 (B) 0 (C) 1 (D) 2

53. The smallest value of the polynomial x3 – 18x2 + 96x in [0, 9] is

(A) 126 (B) 0 (C) 135 (D) 160

54. The function f (x) = 2x3 – 3x2 – 12x + 4, has

(A) two points of local maximum (B) two points of local minimum

(C) one maxima and one minima (D) no maxima or minima

55. The maximum value of sin x . cos x is

(A) 
1
4 (B) 

1
2 (C) 2 (D) 2 2

56. At x = 
5
6
 

, f (x) = 2 sin3x + 3 cos3x is:

(A) maximum (B) minimum

(C) zero (D) neither maximum nor minimum.

57. Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is:

(A) 0 (B) 12 (C) 16 (D) 32

58. f (x) = xx has a stationary point at

(A) x = e (B) x = 
1
e (C) x = 1 (D) x = e

59. The maximum value of 
1  

    

x

x is:

(A) e (B) ee (C) 
1
ee (D) 

1

1  
    

e

e
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Fill in the blanks in each of the following Exercises 60 to 64:

60. The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the
point_____.

61. The equation of normal to the curve y = tanx at (0, 0) is ________.

62. The values of a for which the function f (x) = sinx – ax + b increases on R are
______.

63. The function f (x) = 
2

4

2 –1x
x

, x > 0, decreases in the interval _______.

64. The least value of the function f (x) = ax + 
b
x  (a > 0, b > 0, x > 0) is ______.



7.1 Overview

7.1.1 Let 
d
dx

F (x) = f (x). Then, we write � � � �f dxx�³ = F (x) + C. These integrals are

called indefinite integrals or general integrals, C is called a constant of integration. All
these integrals differ by a constant.

7.1.2 If two functions differ by a constant, they have the same derivative.

7.1.3 Geometrically, the statement � � � �f dxx�³ = F (x) + C = y (say) represents a
family of curves. The different values of C correspond to different members of this
family and these members can be obtained by shifting any one of the curves parallel to
itself. Further, the tangents to the curves at the points of intersection of a line x = a with
the curves are parallel.

7.1.4 Some properties of indefinite integrals

(i) The process of differentiation and integration are inverse of each other,

i.e., � � � � � � � �
d

f dx fx x
dx

� �³  and � � � � � � � �' Cf dx fx x�  � ��³ , where C is any

arbitrary constant.

(ii) Two indefinite integrals with the same derivative lead to the same family of
curves and so they are equivalent. So if f and g are two functions such that

� � � � ( )d d
f dx g x dxx

dx dx
� � ³ � ³, then � � � �f dxx�³  and � � � �g dxx�³ are equivalent.

(iii) The integral of the sum of two functions equals the sum of the integrals of

the functions i.e., � � � � � � � ��� ��dxf gx x���³ = � � � �f dxx�³  + � � � �g dxx�³ .

Chapter 7
INTEGRALS


