Question 1:
Express the given complex number in the form $a + ib$: $(5i) \left(-\frac{3}{5}i \right)$
Answer
\[(5i) \left(-\frac{3}{5}i \right) = -5 \times \frac{3}{5}i \times i \]
\[= -3i^2 \]
\[= -3(-1) \quad \left[i^2 = -1 \right] \]
\[= 3 \]

Question 2:
Express the given complex number in the form $a + ib$: $i^9 + i^{19}$
Answer
\[i^9 + i^{19} = i^{4\times2+1} + i^{4\times4+3} \]
\[= (i^4)^2 \cdot i + (i^4)^4 \cdot i^3 \]
\[= 1 \cdot i + 1 \cdot (-i) \quad \left[i^4 = 1, \ i^3 = -i \right] \]
\[= i + (-i) \]
\[= 0 \]

Question 3:
Express the given complex number in the form $a + ib$: i^{-39}
Answer
\[i^{-39} = i^{4\times9-3} = (i^4)^9 \cdot i^{-3} \]
\[= 1^{-9} \cdot i^{-3} \quad \left[i^4 = 1 \right] \]
\[= \frac{1}{i^3} = \frac{1}{-i} \quad \left[i^3 = -i \right] \]
\[= -\frac{i}{i} \]
\[= -1 = i \quad \left[i^2 = -1 \right] \]
Question 4:
Express the given complex number in the form \(a + ib\): \(3(7 + i7) + i(7 + i7)\)
Answer
\[
3(7 + i7) + i(7 + i7) = 21 + 21i + 7i + 7i^2
= 21 + 28i + 7 \times (-1) \quad \therefore i^2 = -1
= 14 + 28i
\]

Question 5:
Express the given complex number in the form \(a + ib\): \((1 - i) - (-1 + i6)\)
Answer
\[
(1 - i) - (-1 + i6) = 1 - i + 1 - 6i
= 2 - 7i
\]

Question 6:
Express the given complex number in the form \(a + ib\): \(\left(\frac{1}{5} + i\frac{2}{5}\right) - \left(4 + i\frac{5}{2}\right)\)
Answer
\[
\left(\frac{1}{5} + i\frac{2}{5}\right) - \left(4 + i\frac{5}{2}\right)
= \frac{1}{5} + \frac{2}{5}i - 4 - \frac{5}{2}i
= \left(\frac{1}{5} - 4\right) + i\left(\frac{2}{5} - \frac{5}{2}\right)
= \frac{-19}{5} + i\left(\frac{-21}{10}\right)
= \frac{-19}{5} - \frac{21}{10}i
\]

Question 7:
Express the given complex number in the form \(a + ib\): \(\left(\frac{1}{3} + i\frac{7}{3}\right) + \left(4 + i\frac{1}{3}\right) - \left(-\frac{4}{3} + i\right)\)
Answer
Class XI Chapter 5 – Complex Numbers and Quadratic Equations Maths

\[
\left(\frac{1}{3} + i \frac{7}{3} \right) + \left(4 + i \frac{1}{3} \right) - \left(-\frac{4}{3} + i \right) \\
= \frac{1}{3} + \frac{7}{3} + 4 + \frac{1}{3} + \frac{4}{3} - i \\
= \left(\frac{1}{3} + 4 + \frac{4}{3} \right) + i \left(\frac{7}{3} + \frac{1}{3} - 1 \right) \\
= \frac{17}{3} + i \frac{5}{3}
\]

Question 8:
Express the given complex number in the form \(a + ib \): \((1 - i)^4 \)

Answer

\[
(1 - i)^4 = \left((1 - i)^3 \right)^2 \\
= \left[1^2 + i^2 - 2i \right]^2 \\
= \left[1 - 1 - 2i \right]^2 \\
= (-2i)^2 \\
= (-2i)(-2i) \\
= 4i^2 = -4 \quad \left[i^2 = -1 \right]
\]

Question 9:
Express the given complex number in the form \(a + ib \): \(\left(\frac{1}{3} + 3i \right)^5 \)

Answer
Question 10:

Express the given complex number in the form \(a + ib \): \(\left(-2 - \frac{1}{3}i\right)^3 \)

Answer

\[
\left(-2 - \frac{1}{3}i\right)^3 = \left(-1\right)^3 \left(2 + \frac{1}{3}i\right)^3 \\
= -\left[2^3 + \left(\frac{1}{3}i\right)^3 + 3 \cdot \left(2\right) \left(\frac{i}{3}\right) \left(2 + \frac{1}{3}i\right) \right] \\
= -\left[8 + \frac{i}{27} + 2i \left(2 + \frac{i}{3}\right) \right] \\
= -\left[8 - \frac{i}{27} + 4i + \frac{2i^2}{3} \right] \\
= -\left[8 - \frac{i}{27} + 4i - \frac{2}{3} \right] \\
= -\left[\frac{22}{3} + \frac{107i}{27} \right] \\
= -\frac{22}{3} - \frac{107i}{27}
\]

Question 11:

Find the multiplicative inverse of the complex number \(4 - 3i \)
Let $z = 4 - 3i$

Then, $\overline{z} = 4 + 3i$ and $|z|^2 = 4^2 + (-3)^2 = 16 + 9 = 25$

Therefore, the multiplicative inverse of $4 - 3i$ is given by

$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{4 + 3i}{25} = \frac{4}{25} + \frac{3}{25}i$$

Question 12:

Find the multiplicative inverse of the complex number $\sqrt{5} + 3i$

Answer

Let $z = \sqrt{5} + 3i$

Then, $\overline{z} = \sqrt{5} - 3i$ and $|z|^2 = (\sqrt{5})^2 + 3^2 = 5 + 9 = 14$

Therefore, the multiplicative inverse of $\sqrt{5} + 3i$ is given by

$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{\sqrt{5} - 3i}{14} = \frac{\sqrt{5}}{14} - \frac{3i}{14}$$

Question 13:

Find the multiplicative inverse of the complex number $-i$

Answer

Let $z = -i$

Then, $\overline{z} = i$ and $|z|^2 = 1^2 = 1$

Therefore, the multiplicative inverse of $-i$ is given by

$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{i}{1} = i$$

Question 14:
Express the following expression in the form of $a + ib$.

$$\frac{(3+i\sqrt{5})(3-i\sqrt{5})}{(\sqrt{3} + \sqrt{2}i) - (\sqrt{3} - i\sqrt{2})}$$

Answer

$$\frac{(3+i\sqrt{5})(3-i\sqrt{5})}{(\sqrt{3} + \sqrt{2}i) - (\sqrt{3} - i\sqrt{2})}$$

$$= \frac{(3)^2 - (i\sqrt{5})^2}{\sqrt{3} + \sqrt{2}i - \sqrt{3} + \sqrt{2}i} \quad \left[(a+b)(a-b) = a^2 - b^2\right]$$

$$= \frac{9 - 5i^2}{2\sqrt{2}i}$$

$$= \frac{9 - 5(-1)}{2\sqrt{2}i}$$

$$= \frac{9 + 5}{2\sqrt{2}i} \times i$$

$$= \frac{14i}{2\sqrt{2}i^2}$$

$$= \frac{14i}{2\sqrt{2}(-1)}$$

$$= \frac{-7i}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$$

$$= \frac{-7\sqrt{2}i}{2}$$
Exercise 5.2

Question 1:

Find the modulus and the argument of the complex number \(z = -1 - i\sqrt{3} \)

Answer

\[z = -1 - i\sqrt{3} \]

Let \(r \cos \theta = -1 \) and \(r \sin \theta = -\sqrt{3} \)

On squaring and adding, we obtain

\[(r \cos \theta)^2 + (r \sin \theta)^2 = (-1)^2 + (-\sqrt{3})^2 \]

\[r^2 (\cos^2 \theta + \sin^2 \theta) = 1 + 3 \]

\[r^2 = 4 \quad \text{[} \cos^2 \theta + \sin^2 \theta = 1 \text{]} \]

\[r = \sqrt{4} = 2 \quad \text{[} \text{Conventionally, } r > 0 \text{]} \]

\[\therefore \text{Modulus} = 2 \]

\[\therefore 2 \cos \theta = -1 \text{ and } 2 \sin \theta = -\sqrt{3} \]

\[\Rightarrow \cos \theta = -\frac{1}{2} \text{ and } \sin \theta = -\frac{\sqrt{3}}{2} \]

Since both the values of \(\sin \theta \) and \(\cos \theta \) are negative and \(\sin \theta \) and \(\cos \theta \) are negative in III quadrant,

\[\text{Argument} = -\left(\pi - \frac{\pi}{3} \right) = -\frac{2\pi}{3} \]

Thus, the modulus and argument of the complex number \(-1 - \sqrt{3} \) i are 2 and \(-\frac{2\pi}{3} \) respectively.

Question 2:
Find the modulus and the argument of the complex number \(z = -\sqrt{3} + i \)

Answer

\(z = -\sqrt{3} + i \)

Let \(r \cos \theta = -\sqrt{3} \) and \(r \sin \theta = 1 \)

On squaring and adding, we obtain

\[
r^2 \cos^2 \theta + r^2 \sin^2 \theta = \left(-\sqrt{3} \right)^2 + 1^2
\]

\[
\Rightarrow r^2 = 3 + 1 = 4
\]

\[
\Rightarrow r = \sqrt{4} = 2
\]

Conventionally, \(r > 0 \)

\(\therefore \) Modulus = 2

\(\therefore 2 \cos \theta = -\sqrt{3} \) and \(2 \sin \theta = 1 \)

\[
\Rightarrow \cos \theta = -\frac{\sqrt{3}}{2} \quad \text{and} \quad \sin \theta = \frac{1}{2}
\]

\(\therefore \theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \) \[\text{As } \theta \text{ lies in the II quadrant} \]

Thus, the modulus and argument of the complex number \(-\sqrt{3} + i \) are 2 and \(\frac{5\pi}{6} \) respectively.

Question 3:
Convert the given complex number in polar form: \(1 - i \)

Answer

\(1 - i \)

Let \(r \cos \theta = 1 \) and \(r \sin \theta = -1 \)

On squaring and adding, we obtain
Class XI Chapter 5 – Complex Numbers and Quadratic Equations

\[r^2 \cos^2 \theta + r^2 \sin^2 \theta = 1^2 + (-1)^2 \]
\[\Rightarrow r^2 (\cos^2 \theta + \sin^2 \theta) = 1 + 1 \]
\[\Rightarrow r^2 = 2 \]
\[\Rightarrow r = \sqrt{2} \quad \text{[Conventionally, } r > 0 \text{]} \]
\[\therefore \sqrt{2} \cos \theta = 1 \text{ and } \sqrt{2} \sin \theta = -1 \]
\[\Rightarrow \cos \theta = \frac{1}{\sqrt{2}} \text{ and } \sin \theta = -\frac{1}{\sqrt{2}} \]
\[\therefore \theta = -\frac{\pi}{4} \quad \text{[As } \theta \text{ lies in the IV quadrant]} \]
\[\therefore 1 - i = r \cos \theta + ir \sin \theta = \sqrt{2} \cos \left(-\frac{\pi}{4}\right) + i\sqrt{2} \sin \left(-\frac{\pi}{4}\right) = \sqrt{2} \left[\cos \left(-\frac{\pi}{4}\right) + i\sin \left(-\frac{\pi}{4}\right) \right] \]

This is the required polar form.

Question 4:
Convert the given complex number in polar form: \(-1 + i\)

Answer
\(-1 + i\)

Let \(r \cos \theta = -1\) and \(r \sin \theta = 1\)

On squaring and adding, we obtain
\[r^2 \cos^2 \theta + r^2 \sin^2 \theta = (-1)^2 + 1^2 \]
\[\Rightarrow r^2 (\cos^2 \theta + \sin^2 \theta) = 1 + 1 \]
\[\Rightarrow r^2 = 2 \]
\[\Rightarrow r = \sqrt{2} \quad \text{[Conventionally, } r > 0 \text{]} \]
\[\therefore \sqrt{2} \cos \theta = -1 \text{ and } \sqrt{2} \sin \theta = 1 \]
\[\Rightarrow \cos \theta = -\frac{1}{\sqrt{2}} \text{ and } \sin \theta = \frac{1}{\sqrt{2}} \]
\[\therefore \theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4} \quad \text{[As } \theta \text{ lies in the II quadrant]} \]

It can be written,
This is the required polar form.

Question 5:
Convert the given complex number in polar form: \(-1 - i\)
Answer
\(-1 - i\)
Let \(r \cos \theta = -1\) and \(r \sin \theta = -1\)
On squaring and adding, we obtain
\[r^2 \cos^2 \theta + r^2 \sin^2 \theta = (-1)^2 + (-1)^2\]
\[\Rightarrow r^2 (\cos^2 \theta + \sin^2 \theta) = 1 + 1\]
\[\Rightarrow r^2 = 2\]
\[\Rightarrow r = \sqrt{2}\] [Conventionally, \(r > 0\)]
\[\therefore \sqrt{2} \cos \theta = -1\] and \(\sqrt{2} \sin \theta = -1\)
\[\Rightarrow \cos \theta = -\frac{1}{\sqrt{2}}\] and \(\sin \theta = -\frac{1}{\sqrt{2}}\)
\[\therefore \theta = -\left(\pi - \frac{\pi}{4}\right) = -\frac{3\pi}{4}\] [As \(\theta\) lies in the III quadrant]
\[\therefore -1 - i = r \cos \theta + ir \sin \theta = \sqrt{2} \cos \frac{-3\pi}{4} + i\sqrt{2} \sin \frac{-3\pi}{4} = \sqrt{2} \left(\cos \frac{-3\pi}{4} + i\sin \frac{-3\pi}{4}\right)\]
This is the required polar form.

Question 6:
Convert the given complex number in polar form: \(-3\)
Answer
\(-3\)
Let \(r \cos \theta = -3\) and \(r \sin \theta = 0\)
On squaring and adding, we obtain
Question 7:

Convert the given complex number in polar form: \(\sqrt{3} + i \)

Answer

\[\sqrt{3} + i \]

Let \(r \cos \theta = \sqrt{3} \) and \(r \sin \theta = 1 \)

On squaring and adding, we obtain

\[r^2 \cos^2 \theta + r^2 \sin^2 \theta = \left(\sqrt{3} \right)^2 + 1^2 \]

\[\Rightarrow r^2 \left(\cos^2 \theta + \sin^2 \theta \right) = 3 + 1 \]

\[\Rightarrow r^2 = 4 \]

\[\Rightarrow r = \sqrt{4} = 2 \quad \text{[Conventionally, } r > 0 \]}

\[\therefore 2 \cos \theta = \sqrt{3} \text{ and } 2 \sin \theta = 1 \]

\[\Rightarrow \cos \theta = \frac{\sqrt{3}}{2} \text{ and } \sin \theta = \frac{1}{2} \]

\[\therefore \theta = \frac{\pi}{6} \quad \text{[As } \theta \text{ lies in the I quadrant]} \]

\[\therefore \sqrt{3} + i = r \cos \theta + i r \sin \theta = 2 \cos \frac{\pi}{6} + i 2 \sin \frac{\pi}{6} = 2 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right) \]
Question 8:
Convert the given complex number in polar form: \(i \)

Answer
\(i \)

Let \(r \cos \theta = 0 \) and \(r \sin \theta = 1 \)

On squaring and adding, we obtain
\[
r^2 \cos^2 \theta + r^2 \sin^2 \theta = 0^2 + 1^2
\]
\[
\Rightarrow r^2 \left(\cos^2 \theta + \sin^2 \theta \right) = 1
\]
\[
\Rightarrow r^2 = 1
\]
\[
\Rightarrow r = \sqrt{1} = 1 \quad \text{[Conventionally, } r > 0 \text{]}
\]
\[
\therefore \cos \theta = 0 \text{ and } \sin \theta = 1
\]
\[
\therefore \theta = \frac{\pi}{2}
\]

\[
\therefore i = r \cos \theta + ir \sin \theta = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2}
\]

This is the required polar form.
Question 1:
Solve the equation \(x^2 + 3 = 0 \)

Answer

The given quadratic equation is \(x^2 + 3 = 0 \)

On comparing the given equation with \(ax^2 + bx + c = 0 \), we obtain

\(a = 1, \ b = 0, \) and \(c = 3 \)

Therefore, the discriminant of the given equation is

\[D = b^2 - 4ac = 0^2 - 4 \times 1 \times 3 = -12 \]

Therefore, the required solutions are

\[\frac{-b \pm \sqrt{D}}{2a} = \frac{\pm \sqrt{-12}}{2 \times 1} = \frac{\pm \sqrt{12} i}{2} \]

\[= \frac{\pm 2 \sqrt{3} i}{2} = \pm \sqrt{3} i \]

Question 2:
Solve the equation \(2x^2 + x + 1 = 0 \)

Answer

The given quadratic equation is \(2x^2 + x + 1 = 0 \)

On comparing the given equation with \(ax^2 + bx + c = 0 \), we obtain

\(a = 2, \ b = 1, \) and \(c = 1 \)

Therefore, the discriminant of the given equation is

\[D = b^2 - 4ac = 1^2 - 4 \times 2 \times 1 = 1 - 8 = -7 \]

Therefore, the required solutions are
Question 3:
Solve the equation \(x^2 + 3x + 9 = 0 \)
Answer
The given quadratic equation is \(x^2 + 3x + 9 = 0 \)
On comparing the given equation with \(ax^2 + bx + c = 0 \), we obtain
\(a = 1, b = 3, \) and \(c = 9 \)
Therefore, the discriminant of the given equation is
\[D = b^2 - 4ac = 3^2 - 4 \times 1 \times 9 = 9 - 36 = -27 \]
Therefore, the required solutions are
\[\frac{-b \pm \sqrt{D}}{2a} = \frac{-3 \pm \sqrt{-27}}{2} = \frac{-3 \pm 3\sqrt{-1}}{2} = \frac{-3 \pm 3i}{2} \quad \left[\sqrt{-1} = i \right] \]

Question 4:
Solve the equation \(-x^2 + x - 2 = 0\)
Answer
The given quadratic equation is \(-x^2 + x - 2 = 0\)
On comparing the given equation with \(ax^2 + bx + c = 0 \), we obtain
\(a = -1, b = 1, \) and \(c = -2 \)
Therefore, the discriminant of the given equation is
\[D = b^2 - 4ac = 1^2 - 4 \times (-1) \times (-2) = 1 - 8 = -7 \]
Therefore, the required solutions are
\[\frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{-7}}{2\times(-1)} = \frac{-1 \pm \sqrt{7}i}{2} \quad \left[\sqrt{-1} = i \right] \]

Question 5:
Solve the equation \(x^2 + 3x + 5 = 0 \)
Answer
The given quadratic equation is \(x^2 + 3x + 5 = 0 \)
On comparing the given equation with \(ax^2 + bx + c = 0 \), we obtain
a = 1, b = 3, and c = 5
Therefore, the discriminant of the given equation is
\[D = b^2 - 4ac = 3^2 - 4 \times 1 \times 5 = 9 - 20 = -11 \]
Therefore, the required solutions are
\[\frac{-b \pm \sqrt{D}}{2a} = \frac{-3 \pm \sqrt{-11}}{2} = \frac{-3 \pm i\sqrt{11}}{2} \quad \left[\sqrt{-1} = i \right] \]

Question 6:
Solve the equation \(x^2 - x + 2 = 0 \)
Answer
The given quadratic equation is \(x^2 - x + 2 = 0 \)
On comparing the given equation with \(ax^2 + bx + c = 0 \), we obtain
\(a = 1, \ b = -1, \) and \(c = 2 \)
Therefore, the discriminant of the given equation is
\[D = b^2 - 4ac = (-1)^2 - 4 \times 1 \times 2 = 1 - 8 = -7 \]
Therefore, the required solutions are
\[\frac{-b \pm \sqrt{D}}{2a} = \frac{1 \pm \sqrt{7}i}{2} \quad \left[\sqrt{-1} = i \right] \]

Question 7:
Solve the equation \(\sqrt{2}x^2 + x + \sqrt{2} = 0 \)
Answer
The given quadratic equation is \(\sqrt{2}x^2 + x + \sqrt{2} = 0 \)
On comparing the given equation with \(ax^2 + bx + c = 0 \), we obtain
\(a = \sqrt{2}, \ b = 1, \) and \(c = \sqrt{2} \)
Therefore, the discriminant of the given equation is
\[D = b^2 - 4ac = 1^2 - 4 \times \sqrt{2} \times \sqrt{2} = 1 - 8 = -7 \]
Therefore, the required solutions are
\[\frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{7}i}{2 \sqrt{2}} = \frac{-1 \pm \sqrt{7}i}{2\sqrt{2}} \quad \left[\sqrt{-1} = i \right] \]
Question 8:

Solve the equation $\sqrt{3}x^2 - \sqrt{2}x + 3\sqrt{3} = 0$

Answer

The given quadratic equation is $\sqrt{3}x^2 - \sqrt{2}x + 3\sqrt{3} = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

$a = \sqrt{3}$, $b = -\sqrt{2}$, and $c = 3\sqrt{3}$

Therefore, the discriminant of the given equation is

$$D = b^2 - 4ac = \left(-\sqrt{2}\right)^2 - 4\left(\sqrt{3}\right)\left(3\sqrt{3}\right) = 2 - 36 = -34$$

Therefore, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-\sqrt{2}) \pm \sqrt{-34}}{2 \times \sqrt{3}} = \frac{\sqrt{2} \pm \sqrt{34}i}{2\sqrt{3}} \quad \left[\sqrt{-1} = i\right]$$

Question 9:

Solve the equation $x^2 + x + \frac{1}{\sqrt{2}} = 0$

Answer

The given quadratic equation is $x^2 + x + \frac{1}{\sqrt{2}} = 0$

This equation can also be written as $\sqrt{2}x^2 + \sqrt{2}x + 1 = 0$

On comparing this equation with $ax^2 + bx + c = 0$, we obtain

$a = \sqrt{2}$, $b = \sqrt{2}$, and $c = 1$

\therefore Discriminant $(D) = b^2 - 4ac = \left(\sqrt{2}\right)^2 - 4 \times \left(\sqrt{2}\right) \times 1 = 2 - 4\sqrt{2}$

Therefore, the required solutions are
Question 10:

Solve the equation \(x^2 + \frac{x}{\sqrt{2}} + 1 = 0 \)

Answer

The given quadratic equation is \(x^2 + \frac{x}{\sqrt{2}} + 1 = 0 \)

This equation can also be written as \(\sqrt{2}x^2 + x + \sqrt{2} = 0 \)

On comparing this equation with \(ax^2 + bx + c = 0 \), we obtain

\[a = \sqrt{2}, \quad b = 1, \quad \text{and} \quad c = \sqrt{2} \]

\[\therefore \text{Discriminant} \ (D) = b^2 - 4ac = 1^2 - 4 \times \sqrt{2} \times \sqrt{2} = 1 - 8 = -7 \]

Therefore, the required solutions are

\[\frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{-7}}{2 \sqrt{2}} = \frac{-1 \pm \sqrt{7}i}{2 \sqrt{2}} \quad [\sqrt{-1} = i] \]
NCERT Miscellaneous Solutions

Question 1:

Evaluate: \[i^{18} + \left(\frac{1}{i} \right)^{25} \]^3

Answer
Question 2:
For any two complex numbers \(z_1 \) and \(z_2 \), prove that
\[\text{Re} (z_1 z_2) = \text{Re} z_1 \text{Re} z_2 - \text{Im} z_1 \text{Im} z_2 \]
Answer
Let \(z_1 = x_1 + iy_1 \) and \(z_2 = x_2 + iy_2 \)

\[z_1 z_2 = (x_1 + iy_1)(x_2 + iy_2) = x_1(x_2 + iy_2) + iy_1(x_2 + iy_2) \]
\[= x_1 x_2 + ix_1 y_2 + iy_1 x_2 + i^2 y_1 y_2 \]
\[= x_1 x_2 + iy_1 y_2 + i(y_1 x_2 - x_1 y_2) \]
\[[i^2 = -1] \]

\[\Rightarrow \text{Re}(z_1 z_2) = x_1 x_2 - y_1 y_2 \]

\[\Rightarrow \text{Re}(z_1 z_2) = \text{Re} z_1 \text{Re} z_2 - \text{Im} z_1 \text{Im} z_2 \]

Hence, proved.

Question 3:

Reduce \(\left(\frac{1}{1 - 4i} - \frac{2}{1 + i} \right) \left(\frac{3 - 4i}{5 + i} \right) \) to the standard form.

Answer

\[\left(\frac{1}{1 - 4i} - \frac{2}{1 + i} \right) \left(\frac{3 - 4i}{5 + i} \right) = \left(\frac{1 + i - 2(1 - 4i)}{(1 - 4i)(1 + i)} \right) \left(\frac{3 - 4i}{5 + i} \right) \]
\[= \left(\frac{1 + i - 2 + 8i}{1 + i - 4i - 4i^2} \right) \left(\frac{3 - 4i}{5 + i} \right) \]
\[= \left(\frac{-3 + 4i + 27i - 36i^2}{25 + 5i - 15i - 3i^2} \right) \left(\frac{33 + 31i}{28 - 10i} \right) \]
\[= \frac{33 + 31i}{2(14 - 5i)} \times \frac{14 + 5i}{14 + 5i} \]
\[\text{[On multiplying numerator and denominator by (14 + 5i)]} \]
\[= \frac{462 + 165i + 434i + 155i^2}{2(14)^2 - (5i)^2} \]
\[= \frac{307 + 599i}{2(196 - 25i^2)} \]
\[= \frac{307 + 599i}{442} \]

This is the required standard form.
Question 4:

If \(x - iy = \frac{a - ib}{c - id} \) prove that \((x^2 + y^2) = \frac{a^2 + b^2}{c^2 + d^2} \)

Answer

\[
\begin{align*}
 x - iy &= \frac{a - ib}{c - id} \\
 &= \frac{a - ib}{c - id} \times \frac{c + id}{c + id} \quad \text{[On multiplying numerator and denominator by \((c + id)\)]} \\
 &= \frac{(ac + bd) + i(ad - bc)}{c^2 + d^2} \\
 \therefore (x - iy)^2 &= \frac{(ac + bd) + i(ad - bc)}{c^2 + d^2} \\
 \Rightarrow x^2 - y^2 - 2ixy &= \frac{(ac + bd) + i(ad - bc)}{c^2 + d^2} \\
 \text{On comparing real and imaginary parts, we obtain} \\
 x^2 - y^2 &= \frac{ac + bd}{c^2 + d^2}, \quad -2xy = \frac{ad - bc}{c^2 + d^2} \quad (1)
\end{align*}
\]
Class XI Chapter 5 – Complex Numbers and Quadratic Equations Maths

\[(x^2 + y^2)^2 = (x^2 - y^2)^2 + 4x^2y^2\]
\[= \left(\frac{ac + bd}{c^2 + d^2}\right)^2 + \left(\frac{ad - bc}{c^2 + d^2}\right)^2 \quad [\text{Using (1)}]\]
\[= \frac{a^2c^2 + b^2d^2 + 2acbd + a^2d^2 + b^2c^2 - 2adbc}{(c^2 + d^2)^2}\]
\[= \frac{a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2}{(c^2 + d^2)^2}\]
\[= \frac{a^2(c^2 + d^2) + b^2(c^2 + d^2)}{(c^2 + d^2)^2}\]
\[= \frac{(c^2 + d^2) (a^2 + b^2)}{(c^2 + d^2)^2}\]
\[= \frac{a^2 + b^2}{c^2 + d^2}\]
Hence, proved.

Question 5:
Convert the following in the polar form:

(i) \(\frac{1+7i}{(2-i)^2}\), (ii) \(\frac{1+3i}{1-2i}\)

Answer

(ii) Here, \(z = \frac{1+7i}{(2-i)^2}\)
\[= \frac{1+7i}{(2-i)^2} = \frac{1+7i}{4 + i^2 - 4i} = \frac{1+7i}{4-1-4i}\]
\[= \frac{1+7i}{3-4i} \times \frac{3+4i}{3+4i} = \frac{3+4i + 21i + 28i^2}{3^2 + 4^2}\]
\[= \frac{3+4i + 21i - 28}{25} = \frac{-25 + 25i}{25}\]
\[= -1 + i\]
Let \(r \cos \theta = -1\) and \(r \sin \theta = 1\)
On squaring and adding, we obtain
\[r^2 (\cos^2 \theta + \sin^2 \theta) = 1 + 1 \]
\[\Rightarrow r^2 (\cos^2 \theta + \sin^2 \theta) = 2 \]
\[\Rightarrow r^2 = 2 \quad \text{[cos}^2 \theta + \sin^2 \theta = 1] \]
\[\Rightarrow r = \sqrt{2} \quad \text{[Conventionally, } r > 0] \]
\[\therefore \sqrt{2} \cos \theta = -1 \text{ and } \sqrt{2} \sin \theta = 1 \]
\[\Rightarrow \cos \theta = \frac{-1}{\sqrt{2}} \text{ and } \sin \theta = \frac{1}{\sqrt{2}} \]
\[\therefore \theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4} \quad \text{[As } \theta \text{ lies in II quadrant]} \]
\[\therefore z = r \cos \theta + i r \sin \theta \]
\[= \sqrt{2} \cos \frac{3\pi}{4} + i \sqrt{2} \sin \frac{3\pi}{4} = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right) \]

This is the required polar form.

(ii) Here, \(z = \frac{1 + 3i}{1 - 2i} \)
\[= \frac{1 + 3i}{1 - 2i} \times \frac{1 + 2i}{1 + 2i} \]
\[= \frac{1 + 2i + 3i - 6}{1 + 4} \]
\[= \frac{-5 + 5i}{5} = -1 + i \]

Let \(r \cos \theta = -1 \) and \(r \sin \theta = 1 \)

On squaring and adding, we obtain
\[r^2 (\cos^2 \theta + \sin^2 \theta) = 1 + 1 \]
\[\Rightarrow r^2 (\cos^2 \theta + \sin^2 \theta) = 2 \]
\[\Rightarrow r^2 = 2 \quad \text{[cos}^2 \theta + \sin^2 \theta = 1] \]
∴ \[z = r \cos \theta + i \ r \sin \theta \]

\[= \sqrt{2} \cos \frac{3\pi}{4} + i \sqrt{2} \sin \frac{3\pi}{4} \]

This is the required polar form.

Question 6:

Solve the equation \[3x^2 - 4x + \frac{20}{3} = 0 \]

Answer

The given quadratic equation is \[3x^2 - 4x + \frac{20}{3} = 0 \]

This equation can also be written as \[9x^2 - 12x + 20 = 0 \]

On comparing this equation with \[ax^2 + bx + c = 0 \], we obtain

\[a = 9, \ b = -12, \text{ and } c = 20 \]

Therefore, the discriminant of the given equation is

\[D = b^2 - 4ac = (-12)^2 - 4 \times 9 \times 20 = 144 - 720 = -576 \]

Therefore, the required solutions are

\[\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-12) \pm \sqrt{-576}}{2 \times 9} = \frac{12 \pm 576 i}{18} \]

\[= \frac{12 \pm 24i}{18} = \frac{6(2 \pm 4i)}{18} = \frac{2 \pm 4i}{3} \]

Question 7:

Solve the equation \[x^2 - 2x + \frac{3}{2} = 0 \]

Answer
The given quadratic equation is \(x^2 - 2x + \frac{3}{2} = 0 \)

This equation can also be written as \(2x^2 - 4x + 3 = 0 \)

On comparing this equation with \(ax^2 + bx + c = 0 \), we obtain
\(a = 2, \ b = -4, \) and \(c = 3 \)

Therefore, the discriminant of the given equation is
\[
D = b^2 - 4ac = (-4)^2 - 4 \times 2 \times 3 = 16 - 24 = -8
\]

Therefore, the required solutions are
\[
\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-4) \pm \sqrt{-8}}{2 \times 2} = \frac{4 \pm 2\sqrt{2}i}{4} \quad [\sqrt{-1} = i]
\]
\[
= \frac{2 \pm \sqrt{2}i}{2} = 1 \pm \frac{\sqrt{2}}{2}i
\]

Question 8:

Solve the equation \(27x^2 - 10x + 1 = 0 \)

Answer

The given quadratic equation is \(27x^2 - 10x + 1 = 0 \)

On comparing the given equation with \(ax^2 + bx + c = 0 \), we obtain
\(a = 27, \ b = -10, \) and \(c = 1 \)

Therefore, the discriminant of the given equation is
\[
D = b^2 - 4ac = (-10)^2 - 4 \times 27 \times 1 = 100 - 108 = -8
\]

Therefore, the required solutions are
\[
\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-10) \pm \sqrt{-8}}{2 \times 27} = \frac{10 \pm 2\sqrt{2}i}{54} \quad [\sqrt{-1} = i]
\]
\[
= \frac{5 \pm \sqrt{2}i}{27} = \frac{5}{27} \pm \frac{\sqrt{2}}{27}i
\]

Question 9:

Solve the equation \(21x^2 - 28x + 10 = 0 \)

Answer

The given quadratic equation is \(21x^2 - 28x + 10 = 0 \)

On comparing the given equation with \(ax^2 + bx + c = 0 \), we obtain
a = 21, b = -28, and c = 10

Therefore, the discriminant of the given equation is

\[D = b^2 - 4ac = (-28)^2 - 4 \times 21 \times 10 = 784 - 840 = -56 \]

Therefore, the required solutions are

\[\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-28) \pm \sqrt{-56}}{2 \times 21} = \frac{28 \pm \sqrt{56} i}{42} = \frac{28 \pm 2\sqrt{14} i}{42} = \frac{2 \pm \sqrt{14} i}{3} \]

Question 10:

If \(z_1 = 2 - i, z_2 = 1 + i \), find \(\frac{z_1 + z_2 + 1}{z_1 - z_2 + 1} \)

Answer

\[
\begin{align*}
\frac{z_1 + z_2 + 1}{z_1 - z_2 + 1} &= \frac{(2 - i) + (1 + i) + 1}{(2 - i) - (1 + i) + 1} \\
&= \frac{4}{(2 - 2i)} = \frac{4}{2(1 - i)} \\
&= \frac{2 \times 1 + i}{1 - i \times 1 + i} = \frac{2(1 + i)}{1 - i^2} \\
&= \frac{2(1 + i)}{1 + 1} = \frac{2(1 + i)}{2} \\
&= |1 + i| = \sqrt{2^2 + 1^2} = \sqrt{2}
\end{align*}
\]

Thus, the value of \(\frac{z_1 + z_2 + 1}{z_1 - z_2 + 1} \) is \(\sqrt{2} \).

Question 11:
If \(a + ib = \frac{(x+i)^2}{2x^2+1}\), prove that \(a^2 + b^2 = \frac{(x^2+1)^2}{(2x+1)^2}\)

Answer

\[a + ib = \frac{(x+i)^2}{2x^2+1} = \frac{x^2+i^2+2xi}{2x^2+1} = \frac{x^2-1+i2x}{2x^2+1} = \frac{x^2-1}{2x^2+1} + i\left(\frac{2x}{2x^2+1}\right)\]

On comparing real and imaginary parts, we obtain

\[a = \frac{x^2-1}{2x^2+1} \quad \text{and} \quad b = \frac{2x}{2x^2+1}\]

\[\therefore a^2 + b^2 = \left(\frac{x^2-1}{2x^2+1}\right)^2 + \left(\frac{2x}{2x^2+1}\right)^2\]

\[= \frac{x^4+1-2x^2+4x^2}{(2x+1)^2}\]

\[= \frac{x^4+1+2x^2}{(2x^2+1)^2}\]

\[= \frac{(x^2+1)^2}{(2x^2+1)^2}\]

\[\therefore a^2 + b^2 = \frac{(x^2+1)^2}{(2x^2+1)^2}\]

Hence, proved.

Question 12:

Let \(z_1 = 2 - i, z_2 = -2 + i\). Find
Class XI Chapter 5 – Complex Numbers and Quadratic Equations Maths

(i) \(\text{Re} \left(\frac{z_1 z_2}{z_1} \right) \), (ii) \(\text{Im} \left(\frac{1}{z_1 \overline{z}_1} \right) \)

Answer

\(z_1 = 2 - i, \ z_2 = -2 + i \)

(i) \(z_1 z_2 = (2 - i)(-2 + i) = -4 + 2i + 2i - i^2 = -4 + 4i - (-1) = -3 + 4i \)

\(\overline{z}_1 = 2 + i \)

\(\therefore \frac{z_1 z_2}{\overline{z}_1} = \frac{-3 + 4i}{2 + i} \)

On multiplying numerator and denominator by \((2 - i)\), we obtain

\[
\frac{z_1 z_2}{\overline{z}_1} = \frac{(2 - i)(-3 + 4i)(2 - i)}{(2 + i)(2 - i)} = \frac{-6 + 3i + 8i - 4i^2}{2^2 + 1^2} = \frac{-6 + 11i - 4(-1)}{2^2 + 1^2} = \frac{-2 + 11i}{5} = \frac{-2}{5} + \frac{11i}{5}
\]

On comparing real parts, we obtain

\[
\text{Re} \left(\frac{z_1 z_2}{z_1} \right) = \frac{-2}{5}
\]

(ii) \(\frac{1}{z_1 \overline{z}_1} = \frac{1}{(2 - i)(2 + i)} = \frac{1}{(2)^2 + (1)^2} = \frac{1}{5} \)

On comparing imaginary parts, we obtain

\[
\text{Im} \left(\frac{1}{z_1 \overline{z}_1} \right) = 0
\]

Question 13:

Find the modulus and argument of the complex number \(\frac{1 + 2i}{1 - 3i} \).

Answer

Let \(z = \frac{1 + 2i}{1 - 3i} \), then
On squaring and adding, we obtain

\[r^2 \left(\cos^2 \theta + \sin^2 \theta \right) = \left(-\frac{1}{2} \right)^2 + \left(\frac{1}{2} \right)^2 \]

\[\Rightarrow r^2 = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \]

\[\Rightarrow r = \frac{1}{\sqrt{2}} \]

[Conventionally, \(r > 0 \)]

\[. \quad \frac{1}{\sqrt{2}} \cos \theta = -\frac{1}{2} \quad \text{and} \quad \frac{1}{\sqrt{2}} \sin \theta = \frac{1}{2} \]

\[\Rightarrow \cos \theta = -\frac{1}{\sqrt{2}} \quad \text{and} \quad \sin \theta = \frac{1}{\sqrt{2}} \]

\[. \quad \theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4} \]

[As \(\theta \) lies in the II quadrant]

Therefore, the modulus and argument of the given complex number are \(\frac{1}{\sqrt{2}} \) and \(\frac{3\pi}{4} \) respectively.

Question 14:

Find the real numbers \(x \) and \(y \) if \((x - iy)(3 + 5i)\) is the conjugate of \(-6 - 24i\).

Answer

Let \(z = (x - iy)(3 + 5i) \)

\[z = 3x + 5xi - 3yi - 5y i^2 = 3x + 5xi - 3yi + 5y = (3x + 5y) + i(5x - 3y) \]

\[. \quad \bar{z} = (3x + 5y) - i(5x - 3y) \]

It is given that, \(\bar{z} = -6 - 24i \)
Equating real and imaginary parts, we obtain

3x + 5y = −6 \quad \ldots \text{(i)}

5x − 3y = 24 \quad \ldots \text{(ii)}

Multiplying equation (i) by 3 and equation (ii) by 5 and then adding them, we obtain

\[
9x + 15y = -18 \\
25x - 15y = 120 \\
\frac{34x}{34} = 102
\]

\[
\therefore x = \frac{102}{34} = 3
\]

Putting the value of x in equation (i), we obtain

\[
3(3) + 5y = -6 \\
\Rightarrow 5y = -6 - 9 = -15 \\
\Rightarrow y = -3
\]

Thus, the values of x and y are 3 and -3 respectively.

Question 15:

Find the modulus of \(\frac{1+i}{1-i} \cdot \frac{1-i}{1+i}\).

Answer

\[
\frac{1+i}{1-i} \cdot \frac{1-i}{1+i} = \frac{(1+i)^2 - (1-i)^2}{(1-i)(1+i)} \\
= \frac{1+i^2 + 2i - 1 - i^2 + 2i}{1^2 + 1^2} \\
= \frac{4i}{2} = 2i
\]

\[
\therefore \left|\frac{1+i}{1-i} \cdot \frac{1-i}{1+i}\right| = |2i| = \sqrt{2^2} = 2
\]

Question 16:
If \((x + iy)^3 = u + iv\), then show that \(\frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)\)

Answer

\[
(x + iy)^3 = u + iv
\]

\[
\Rightarrow x^3 + (iy)^3 + 3x \cdot iy (x + iy) = u + iv
\]

\[
\Rightarrow x^3 + i^2 y^3 + 3x^2y^2i + 3xy^2i^2 = u + iv
\]

\[
\Rightarrow x^3 - iy^3 + 3x^2yi - 3xy^2 = u + iv
\]

\[
\Rightarrow (x^3 - 3xy^2) + i(3x^2y - y^3) = u + iv
\]

On equating real and imaginary parts, we obtain

\[
u = x^3 - 3xy^2, \ v = 3x^2y - y^3
\]

\[
\therefore \frac{u}{x} + \frac{v}{y} = \frac{x^3 - 3xy^2}{x} + \frac{3x^2y - y^3}{y}
\]

\[
= \frac{x(x^2 - 3y^2)}{x} + \frac{y(3x^2 - y^2)}{y}
\]

\[
= x^2 - 3y^2 + 3x^2 - y^2
\]

\[
= 4x^2 - 4y^2
\]

\[
= 4(x^2 - y^2)
\]

\[
\therefore \frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)
\]

Hence, proved.

Question 17:

If \(\alpha\) and \(\beta\) are different complex numbers with \(|\beta| = 1\), then find \(|\beta - \alpha| \div |1 - \bar{\alpha}\beta|\).

Answer

Let \(\alpha = a + ib\) and \(\beta = x + iy\)

It is given that, \(|\beta| = 1\)

\[
\therefore \sqrt{x^2 + y^2} = 1
\]

\[
\Rightarrow x^2 + y^2 = 1 \quad \text{... (i)}
\]
Class XI Chapter 5 – Complex Numbers and Quadratic Equations Maths

\[
\frac{\beta - \alpha}{1 - \bar{\alpha}\beta} = \frac{(x + iy) - (a + ib)}{1 - (a - ib)(x + iy)}
\]

\[
= \frac{(x - a) + i(y - b)}{1 - (ax + aiy - ibx + by)}
\]

\[
= \frac{(x - a) + i(y - b)}{(1 - ax - by) + i(bx - ay)}
\]

\[
= \frac{|(x - a) + i(y - b)|}{(1 - ax - by)^2 + (bx - ay)^2}
\]

\[
= \frac{\sqrt{x^2 + a^2 - 2ax + y^2 + b^2 - 2by}}{\sqrt{1 + a^2 x^2 + b^2 y^2 - 2ax + 2aby - b^2 x^2 + a^2 y^2 - 2abxy}}
\]

\[
= \frac{\sqrt{(x^2 + y^2) + a^2 + b^2 - 2ax - 2by}}{\sqrt{1 + a^2 (x^2 + y^2) + b^2 (y^2 + x^2) - 2ax - 2by}}
\]

\[
= \frac{\sqrt{1 + a^2 + b^2 - 2ax - 2by}}{\sqrt{1 + a^2 + b^2 - 2ax - 2by}}
\]

\[
\Rightarrow \left| \frac{\beta - \alpha}{1 - \bar{\alpha}\beta} \right| = 1
\]

Question 18:

Find the number of non-zero integral solutions of the equation \(|1 - i|^x = 2^x \).

Answer
Thus, 0 is the only integral solution of the given equation. Therefore, the number of non-zero integral solutions of the given equation is 0.

Question 19:
If \((a + ib) (c + id) (e + if) (g + ih) = A + iB\), then show that
\((a^2 + b^2) (c^2 + d^2) (e^2 + f^2) (g^2 + h^2) = A^2 + B^2\).

Answer
\[
(a + ib) (c + id) (e + if) (g + ih) = A + iB
\]
\[
\Rightarrow \sqrt{(a^2 + b^2) (c^2 + d^2) (e^2 + f^2) (g^2 + h^2)} = |A + iB|
\]
\[
\Rightarrow \sqrt{a^2 + b^2} \times \sqrt{c^2 + d^2} \times \sqrt{e^2 + f^2} \times \sqrt{g^2 + h^2} = \sqrt{A^2 + B^2}
\]
On squaring both sides, we obtain
\((a^2 + b^2) (c^2 + d^2) (e^2 + f^2) (g^2 + h^2) = A^2 + B^2\)
Hence, proved.

Question 20:

If \(\left(\frac{1+i}{1-i}\right)^n = 1\), then find the least positive integral value of \(m\).

Answer
Therefore, the least positive integer is 1.

Thus, the least positive integral value of \(m \) is 4 (= 4 \times 1).